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Background

Antimicrobial resistance (AMR) is one of the most serious public health threats of
the twenty-first century. A systematic review published recently in the The Lancet
reveals, its global impact is far greater than many infectious diseases such as
malaria and AIDS.

Resistance to antimicrobial agents has become a major source of morbidity and
mortality worldwide.

Antibiotic resistance remains a public health threat during the Coronavirus disease

2019 (COVID-19) pandemlc Thwmmmﬁﬁﬁﬁmm
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Emergence of AMR in

Bacteria

+ Bacterial resistance is considered a major concern in
healthcare organizations. Specially gram-negative bacteria are a
leading cause of life-threatening infections and include nosocomial
infections (NI1), urinary tract infections (UTlIs),
nosocomial pneumonia (NP), and other inflammatory diseases.
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To design an in-silico resource to discern
diversity of antibiotic resistance genes in
various -omics datasets

Pandey D. et. al. Biology Methods &



Problem Statement & Genesis of Present
Resource

+ The prominent ones being Antibiotic Resistance Genes Database (ARDB),

Comprehensive B-lactamase Molecular Annotation Resource (CBMAR), ResFinder,
Comprehensive Antibiotic Resistance Database (CARD), Resfams, Metagenomic
Markov models for Antimicrobial Resistance Characterization (Meta-MARC),
Antimicrobial Resistance Gene Finder (AMRFinderPlus) etc.

Limitations associated with previous methods such as:

1.

ARDB is no longer updated (Last Update: 2009), and its data is incorporated in
the CARD database.

Resfams is a database of hidden Markov models (HMMs) developed
using the 166 protein families associated with antibiotic
resistance (Last Update: 2014).

Meta-MARC is based on hierarchical HMMs, which can predict AMR in metagenomic
data (either a short read or a longer assembled contig) into resistance class, group,
and mechanism. But Meta-MARC result indicated high false positive
prediction and no user-friendly interface is available.

AMRFinderPlus identifies acquired AMR genes and resistance-associated point
mutations in protein or assembled nucleotide sequences. But this tool is
difficult for non-programmers.

CARD identifies and annotates ARGs using BLAST. But sequence alignment
methods like BLAST work well in comparing sequences with a high
degree of similarity (60% or higher) but do not identify a distant
homolog.
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Classification of whole

sequences

Given:

- a set of classes C and

- a number of example sequences in each class,
train a model so that for an unseen sequence

we can say to which class it belongs
Example:

- Given a set of protein families, find family of a
new protein

- Glven a sequence of packets, label session as
Intrusion or normal

- Given several utterances of a set of words,
classify a new utterance to the right word



Markov Chains

Time (days) .
Sunny Clnl;de | Rain

States : Three states - sunny, cloudy, rainy.



Hidden Markov Models
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Hidden states : the (TRUE) states of a system that
may be described by a Markov process (e.g., High
of low pressure systems).

Observable states : the states of the process that
are “visible' (e.g., weather).



Components Of HMM

Output matrix : containing the probability of observing a
particular observable state given that the hidden model is in a
particular hidden state.

Initial Distribution : contains the probability of the (hidden)
model being in a particular hidden state at time t = 1.

State transition matrix : holding the probability of a hidden
state given the previous hidden state.



Multiple alignment

ACA===§})TG

TCAACTATC

ACAC==4AGC

AGA- -ATC
CG

Consensus: / f \ \X\A\\\

[AT] [CG] [AC] [ACGT]* A [TG] [GC]

How to distinguish: TGCT--AGG
ACAC--ATC



Protein Profile HMMs

* Motivation

— We want an efficient representation of
motives.

« What is a Profile?

— Patterns of conservation, some positions are more
conserved than the others



Components Of HMM

Output matrix : containing the probability of observing a
particular observable state given that the hidden model is in a
particular hidden state.

Initial Distribution : contains the probability of the (hidden)
model being in a particular hidden state at time t = 1.

State transition matrix : holding the probability of a hidden
state given the previous hidden state.



Multiple alignment

AGCA===48T6G
TCAACTATC
ACAC--AGC
AGA-~=-=-ATC
ACCG -

Consensus: / j (i \\ \A\\\

[AT] [CG] [AC] [ACGT]* A [TG] [GC]

How to distinguish: TGCT--AGG
ACAC=-=-A4AT1TC



Protein Profile HMMs

 Motivation

— We want an efficient representation of
motives.

« What is a Profile?

— Patterns of conservation, some positions are more
conserved than the others



Protein profile representation
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HMM topology (Hidden states)
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PFAM Database - of Protein families
(pfam.wustl.edu)
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Building — from an existing alignment

ACA| --- ATG
TCA ACT ATC

ACA C-- AGC

AGA| --- ATC m
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A HMM model for a DNA motif alignments, The transitions are
shown with arrows whose thickness indicate their probability. In
each state, the histogram shows the probabilities of the four

bases.



Building — Final Topology
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An Overview

Aligned Sequences

|

Build a Profile HMM (Training)

A N

Database Query against Profile Multiple
search HMM database alignments

(Forward) (Viterbi)
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Query a new sequence

Suppose | have a query sequence, and | am interested in
which family it belongs to?

m
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Consensus sequence. FaloXeEEy-NIe:

P (ACACATC) = 0.8x1 x 0.8x1 x 0.8x0.6 x 0.4x0.6 x 1x1 x
0.8x1x0.8=4.7x102



Scoring

P (ACACATC) = 0.8x1 x 0.8x1 x 0.8x0.6 x 0.4x0.6 x 1x1 x
0.8x1x0.8=4.7x10"2

b ] ¥

i

0.25%

log-odds for sequence S = log = log P(S) — Llog0.25

log-odds{ACACATC) = 116404116404+ 1.16—0.51+
0.47—-0514+1.39401.164+04+1.16
=  0H.64.
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An alignment of 30 short amino acid sequences chopped out
of a alignment of the SH-3 domain. The shaded area are the
most conserved and were represented by the main states in

the HMM. The unshaded area was represented by an insert

state.
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Database Searching

* Given HMM M, for a sequence family,
find all members of the family in data
base.

19



Multiple Alignments

* Try every possible path through the
model that would produce the target
sequences

— Keep the best one and its probability.

— Qutput : Sequence of match, insert and
delete states

» Viterbi alg. Dynamic Programming

( e ) —{ )
3740




Advantages

Characterize an entire family of sequences.

Position-dependent character distributions and
position-dependent insertion and deletion gap
penalties.

Built on a formal probabilistic basis

Can make libraries of hundreds of profile HMMs and
apply them on a large scale (whole genome)

21



Motivatio
n
¢ Thus, we have described a new in-silico tool for rapid monitoring,
characterization, and surveillance of all bacterial antibiotic resistance
genes (ARGs) which named as Bacterial Antibiotic Resistance scan (BacARscan).

+ This tool has the edge over its predecessors as it can also discern
ARGs in short sequencing reads and fragmented contigs.

+ BacARscan can be easily integrated into a user-defined ARG annotation
pipeline for the detection of ARG variants in the microbial genomes.

Schema of the tool

ﬂ \ 'ﬂ‘) '“' )

GTACTCTAAACCCATACAT

Input Test
(-omics Dataset)

"' ii I ‘ (Short'Sequ&ence Reads)

- -

e
b
>

VHLTPEEKMAPQTYLGVW e Ticlibn
Bacterial Antibiotic Gene & Protein . .
Resistance Sequences Dataset Hidden Markov Evaluation l
Preparation Model Creation
No Non-

Annotation ARGs/ARPs
Complete
Annotation ARGs/ARPs

Prediction and characterization of
Antibiotic Resistance
genes/proteins (ARGs/ARPSs)

Pandey D. et. al. Biology Methods &
Protocol; 2022




Workflow & Data

'

Statistics
Number of Sequences
5. No. ARG Database Before mdl{ﬂditl‘lt}' After redupdancy
Dt Sonroes Back Translated | A
L. ARDB 7828 7825
ARDB HMP Antibiotic Antibiotic 2 ARG 1689 1601
T — Resistance Resistance 3 CARD 2158 2155
ARG-ANNOT LACED :
CARD MVIRDB Proteins Genes 4. CBMAR 1273 3273
CBMAR PASTEUR (ARPS) (ARGS) s, INTEGRALL 11132 11132
INTEGRALL PATRIC _
RAC  LAHEY CLINIC \ / 6. RAC 6911 6911
UCARE RESFAMS v 7. T™MLS 1983 1983
RESFINDER TMLS/ Binning of ARGs and ARPs on N UCARE DB % 99
Published Research the basis of antibiotic 9. LAHEY CLINIC 3562 3562
Papers inactivation proﬁle 10 RESFAM 3169 1745
BLASTCLUST 1 RESFINDER 2156 2008
(90% identity 12. HMP 7828 7825
threshold & 95% 13, LACED 483 448
Query ngerage) 14, MVIR-DB 64711 61469
Removed clusters containing  «g=| Members of each bin divided - S i ua
<5 or fragmented ARPS & ARGS intu distinct ClllStEI'S Total AR gene/protein sequences 118105 113159

Build MSAs of each >5
ARPs & ARGs
sequence clusters

Build protein and nucleotide ;
> . Detailed
profile Hidden Markov Models +9» .
Annotation
(pPARGhmm & nARGhmm)

Methodology used for the development

of BacARscan

Data Statistics of Antibiotics
resistance gene/protein
sequences retrieved from
various ARG databases; before
and after redundancy
reduction

Pandey D. et. al. Biology Methods &
Protocol; 2022



Functional annotation of protein (p) and nucleotide (n)

] coiistin

. Fluoroguinolones
. Fosfomycin

. Glycopeptide

. Lincosamides

. Macrolide

. Multidrug Resistance
. MNucleoside

. Others

. Peptides

. Quaternary Ammonium
. Streptogramin

. Sulfonamides

. Tetracycline

Trimethoprim

Distribution of ARG HMM profiles
into various antibiotic classes. The
numerical value indicates the number of HMM
that inactivates the antibiotic

ARGhmm
111246917 Drug Class
oLl 7/ I’;"”tgj“ ARGhmm profiles includes:
ela-l1actam
Chloramphenicol

# Class and subclass of
antibiotics against which the
guery proteins/genes impart
resistance

+ Resistance mechanism

¢ Antimicrobial resistance
spectrum

+ AMR protein name & families

—w—Function-of AMRgenres——
¢ UniProt ID against each
ARGhmm

Pandey D. et. al. Biology Methods &
Protocol; 2022



Comparison of Resfams and BacARscan profiles - HMM models

on the basis of their resistance mechanism

fi0-

BacARscan

. Resfams

HWM Profiles
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Resistance Mechanism
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Renchmark Datasets

Dataset-1V:
Annotation of

sequences
Negative dataset:
Protein clusters < 5

segLences

negative data
Length: 100 nt
Each sequence:
20 short

2) 369 Non-antibiotic
resistant bacterial

efflux Pandey et al..

"Dataset-I: gzta:et-ll: Dataset- ARGSs in
Evaluation ort sequence lll:Independent different strains
dataset reads dataset of ESKAPE

o From back- 1) 60 Penicillin-binding | pathogens
P05|.t|ve dataset: translation of proteins (PBPs) or DD- | Five proteomes
Protein clusters = 5 pos|t|ve and peptidase of each

Sci. Rep. 2020)

TeorurTTrieco

@taset-v: Validation Dataset
To benchmark BacARscan vis-a-vis other ARG prediction and

annotation methods.

Source: CARD database (date: 29-07-2022) 4422 ARG

sequences.

Short reads of 151nt length at 20x coverage were simulated.

100,000 short reads randomly selected for benchmarking.

Simulated Non-ARG short-read Data:

Source: 2 million short-reads from complete genome of a
probiotic strain of Enterococcus faecium Strain T-110 (NCBI
Genome Accession Number: CP006030) Natarajan et.al. (2015)

The comparative evaluation was carried out among BacARscan,
Meta-MARC, and ResFinder

\/metagenomic N\

(Kujiraoka et al.,

organism of
ESKAPE

Dataset VI:5-
Clinical

data

16 metagenomic
samples from
human patients
of
cholecystectomy,
six from human
bile and five
from gut and
saliva each.

2017: Frontiers in

Microbiology).

Pandey D. et'U*AWGﬂ%ﬂM"’thi’ds &

Protocol; 2022



Performance of BacARscan (pARGhmm &

NnARGhmm)
Dataset-l: Evaluation dataset
Modules PARGhmm NARGhmm
Paramete Tru
rs True Fals . F- e Fals . . F-
Positi e Precis measure | Pos e Precisi measur
No. of Posit | ion(%) o ... | Posi| on(%) 0
. ve . (%) itiv | .. e (%)
top hits ive o tive
1 228 26 89.76% | 94.60% 231 | 23 90.94% 95.25%
3 229 25 90.15% 94.82% 235 | 19 92.51% 96.11%
5 234 20 920}012 95.90% | 237 | 17 93.30% 96.53%
7 233 21 91.73% 95.68% 236 | 18 92.91% 96.32%
9 232 22 91.33% 95.47% 240 | 14 94.48% 97.16%
11 209 45 82.28% 90.28% 241 | 13 |94.88% | 97.37%
13 182 72 71.65% 83.48% 240 | 14 94.48% 97.16%
15 158 96 62.20% 76.69% PRayBpey D.get. aB Hjyjolgyol guegds
Protoco|; 2022




Comparison of proposed method BacARscan with
existing methods using homologous sequences

Dataset-lll:Independent dataset

Method Type of True False True False
dataset Negativ | Positiv | Negative | Positive
used e e Rate (%) Rate (%)
BacARscan 54 06 90% 10%
- Penicillin-
AMRFinderPI binding 48 12 80% 20%
us proteins
Meta-MARC (PBPs) 51 09 85% 15%
RGI-CARD 45 15 75% 25%
Resfams 56 04 93.33% 6.67%
BacARscan 366 23 94.08% 5.91%
AMRFinderPI I\!of‘- ] 352 37 90.48% 9.51%
us antibiotic
efflux
Meta-MARC proteins 363 26 93.31% 6.68%
RGI-CARD | (MOM-ARE) [ -4g 01 76.60% 23.39%
Resfams 365 5 '12’:‘;’,’ g&;.t83%'6 Biplogy Hlegpods




# of reads predicted (Hits
E- # of Found)
val simulate
Thar::h d reads | BacARsca | Meta- Resfi | Performance of
old n MARC nder | BacARscan and other off-
the-shelf tools in
le-6 58703 69294 ggg3] | Predicting antibiotic
100000 resistance, an external
le-3 | AR Short 66802 77667 89580 | test set of ARG short-read
Reads data
Defaul 78680 89778 99875
t (10)
# of Reads Predicted (Hits Found) & Unique
E-value ARGs
Thrlt;sho Tools # of # of False Neg:ﬁve Performance
Reads | Unique |Positive Rate Rate of BacARscan
Predicted ARGs (%) (%) and other off-
BacARscan | 3979 19 0.20% 99.80% | the-shelftools
Meta-MARC| 22331 56 1.12% 98.88% in predicting
le-6 | ResFinder | 1912 5 0.10% 99.90% antibiotic
BacARscan| 238 3 0.02% 99.98% resistance in
le-20 [Meta-MARC| 9034 18 0.46% 99.54% an external
ResFinder 1648 3 0.09% 99.91% test set of
BacARscan Y 0 ) ) Non-ARG
le-50 |Meta-MARC 0 0 0 0 short-read
ResFinder | 1500 3 0.08% Pandep®928s. a|l. S1®¥¥8gy methods &

Protocol; 2022



Dataset-1V: Annotation of ARGs of 30 proteomes of
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Dataset VI: Clinical metagenomic data
Comparative evaluation of prediction efficiency of
BacARscan on metagenomic data
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Kujiraoka, M. et al. Front.
(2017)

Microbiol. 8, 685
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Web interface and standalone

> In the BacARscan web tool, a
user has the option to choose

between query sequence type
and nature of HMM-profiles Sequence
(either ‘Protein/pARGhmm’ or

‘Gene/nARGhmm’). l

» The web platform of BacARscan
can process 100 sequences at a
time l

> For| Speed ersion

Assessment————————

> 30 complete proteomes (6

ESKAPE organisms x 5 different Igenequerly
strains) containing 1,28,305 Into protein
nearly 31 minutes to complete the Jia (s

annotation of all 30 proteomes, ~ IpARGhmm nARGhmmM

one minute per proteome. BacARstan Prediction
(Complete annotation) [¢

Protein/Gene

Translate Translation

required?

> Intel(R) Xeon(R) 4 Core E5507
2.27 GHz processor with 6GB .
Pandey D. et. ethods
DDRA4 RAM, 64-bit Red Hat &Protgcol;zo éﬂﬂ%ﬁ%ﬂ
Et ) i b

system (Release 6.2).

Prediction schema of




Web Interface

Result Page
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Conclusions

e BacARscan: in-silico ARG annotation resource that can be used for rapid
monitoring, surveillance, and characterization of antibiotic resistance
determinants in both genomics and proteomic datasets.

e Current version of BacARscan supports prediction using 254 ARG families.

e Comparison with other in-silico resources like AMRFinderPlus, Meta-MARC, Resfams,
and CARD revealed that BacARscan’s ability to discern ARGs in -omics
datasets was much more significant than its predecessors. Also it indicated
less false positive prediction of ARG by BacARscan vis-a-vis other methods.

@ One of the most notable improvements of BacARscan over other ARG annotation methods is
its ability to work on both genomes and short reads sequence libraries with equal efficiency

1 N b H £ | £ el L l
atta wWitrmtout aity TSQUI TSIt TOT dS5CTTTOTY O STTOTU TEdUS.

Potential use of
—BacARscan
e Can identify ARGs in an -omics (proteomics/genomics and metagenomic) datasets.
e BacARscan can also be combined with traditional surveillance and thus can
complement the traditional methods of ARG annotation.

Pandey D. et. al. Biology Methods &

ermndmemmis 29N



To develop a two-tier system to predict and categorize
bacterial efflux-mediated
antibiotic resistance proteins and their families

C O EFFLUX POMP

ANTIBIOTIC

ANTIBIOTIC
IS PUMPED
OUT THE

| —

BACTERIA
L_®

Pandey D. et. al. Scientific Reports; 2020
Pandey D. et. al. Nature Protocol
Exchange; 2021




Motivatio
n

e Efflux proteins are present in both Gram-positive and Gram-negative
bacteria.

e Prokaryotic Efflux pumps are divided into five classes: Major facilitator
superfamily (MFS), ATP -binding cassette (ABC) superfamily, Small
multidrug resistance (SMR) family, Resistance- nodulation cell division
(RND) superfamily, Multi- antimicrobial extension (MATE).

e Efflux protein pumps constitute between 6-18% of all the transporters present in any
bacterial species. Efflux pumps might be specific for one substrate or may transport a
range of structurally dissimilar compounds (including antibiotics of multiple
classes). Efflux pumps were associated with multiple drug resistance
(MDR) in bacteria.

e We could not find any in-silico tool that can discriminate bacterial
antibiotic resistance efflux (ARE) proteins from efflux proteins which do—
not efflux out antibiotics (non-ARE), and/or can predict the familv to

e BacEffluxPred: a machine-learning based two-tier in-silico tool that
discriminates bacterial ARE proteins from non-ARE and also predicts
its respective family.

e BacEffluxPred completes a prediction cycle in two different tiers.

e Tier-l: discrimination between ARE and non-ARE proteins

Trerti: bt fARE proteints) family

Pandey D. et. al. Scientific Reports; 2020
Pandey D. et. al. Nature Protocol
Exchange; 2021




WO""\|'<f|° BacEffluxPred

(B) Feature Imrd'{ng fa] 'Mﬂcfe'.['-"]";uiuiﬂﬂ 4) Performance Evaluation
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Tier-1 & Il Pratein Sequence SVM Machine

Learning Methad
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Data Sources and

Compilation

Tier-1 dataset
compilation: Numerical
values indicate the number of
proteins. ARE: antibiotic
resistance efflux proteins, non-
ARE: non-antibiotic resistance
efflux proteins, non-efflux:
non-efflux prokaryotic proteins,
and non-EAR: non-efflux

4,71,885 25,876 389 1| 1132
Non-ARE Non-ARE : Non-ARE Non-ARE, 10
UniProtkB il e
— : || Efflux &
) 8,296 S 554 Non-EAR
Non-Efflux Non-Efflux j
Non-Efflux T
189
BacARscan Non-EAR .
1,099 243
Non-ARE, Non-Efflux || Non-ARE, Non-Efflux
Non-EAR & ARE Non-EAR & ARE
927 205
172 Non-ARE, 38 Non-ARE,
ARE Non-Efflux & ARE Non-Efflux &
Non-EAR Non-EAR
878 57 4 5/6 Training | 178 |[ 178 |[ 178 178
ABC ABC ABC ABC MFS RND MATE
; 34 80 40
UniProtKB 3,355 123 % i IS o MATE
\ mrs (Sl 7| wrs MFS
4402 o 74 4 144 138 158
RND RND RND non-ABC  non- Mpg non-RND  non-MATE
/ 177 23 23
. MATE
Patric MATE MATE
1,148 179 4
SMR SMR SMR

32 32
16Testing | ABC || wmrs RND MATE
07

ABC MFS RND MATE

non- ABC non- MFS non- RND non- MATE

Tier-Il dataset
compilation: Numerical
values indicate the number of
proteins. ABC, MFS, RND, MATE
and SMR are efflux protein

Fl IR

IIIIIIt:b

Pandey D. et. al. Scientific Reports; 2020
Pandey D. et. al. Nature Protocol
Exchange; 2021




Performance of SVM models at training and independent testing
dataset during LOOCV at tier-l1 and II

Thre Tier Training Dataset Independent Testing Dataset
shol
d AC SEN SPE | MC | AUC AC SEN SPE | MC | AU
(%) (%) (%) C (%) (%) (%) C C
-0.4 Tier-l 85.81 | 80.23 | 86.84 (0.57 | 0.87 | 94.24 | 86.84 | 95.61 | 0.79|0.95
-0.4 T | ABC |92.13 | 88.24 | 93.06 | 0.77 | 0.96 | 93.75 | 100.00 | 92.00 | 0.85 [ 0.96
i
-0.3 MFS | 85.39 | 87.50 | 83.67 |0.71| 0.92 | 93.75 | 93.33 | 94.12 | 0.87 | 0.97
e
-0.4 r |RND 91.01 | 90.00 | 91.30 [ 0.76 | 0.94 | 93.75 | 100.00 | 92.00 | 0.85|1.00
0.3 - MAT | 99.44 | 95.00 | 100.00 [ 0.97 | 0.99 | 100.00 | 100.00 | 100.00 | 1.00 | 1.00
E
]

The overall performance of SVM models during LOOCV at tier-l and tier-Il.
AC, SEN, SPE, MCC and AUC represent accuracy, sensitivity, specificity,
Matthew’s correlation coefficient (MCC) and area under ROC curve (AUC)
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To design an online tool for the prediction and
classification of -Lactamase in class, subclass,

and family

BREAKDOWN

% ENZYMES
<~ DEGRADE

\ ANTIBIOTIC

Pandey D. et al. Frontiers in
Microbiology, 2022



Motivatio
n

B-lactams are the most commonly prescribed drug for treatment of Gram-negative
bacterial infection. Despite 70 years of clinical use, B-lactam antibiotics still remain
at the forefront of antimicrobial chemotherapy.

The resistance against B-lactam antibiotics is due to development of a highly diverse group
of enzymes, collectively called B-lactamases (BLs), that hydrolyze the amide
bond of a B-Lactam ring to make it ineffective.

Over the years, several classification systems have been developed to classify BLs.
However, the most popular schemes are:;

(i) Ambler's classification scheme, which was based on the amino
acid sequence similarity

(ii) Bush, Jacoby, and Medeiros classification scheme, which was
based on substrate and inhibitor profiles

Ambler's classification scheme categorized BLs into four classes: A, B, C, and D.
Class A, C, and D are also known as serine BLs because they have an active-
site serine to catalyze the hydrolysis.

Class B BLs are known as Metallo B-Lactamases (MBLs) since they
use zinc ions (Zn2+) for their activity.

MBLs are distinct from the serine BL in sequence, structure fold, and catalytic
mechanism and they are further divided into three subclasses, B1, B2, and B3,
based on their active site geometry and overall homology.




Motivatio

Several screening tests have been developed to identify the family of BLs at both gene and
whole genome levels. However, these methods are resource and time-consuming.
An alternative approach for rapid annotation of BLs family is to use computational
methods, which can quickly identify BLs genes/proteins and classify them into the family.

The most popular computational approach is using BLAST search against either general-
purpose molecular biology databases such as NCBI NR/NT or UniProtKB/Swiss
Prot or BL-specific databases such as BLDB, BLAD, LacED, ARDB, CARD, and
our laboratory has also developed a database of f-lactamases named

S T .1 VW .

However, there are a few limitations of LactFP. The most critical limitation
of LactFP was that it was developed using a dataset compiled in 2014. Over
time information about new family members and many mutations in different
families has been accumulated in the databases. Hence LactFP might not be
capable of predicting all BL families correctly. This indicates that a tool capable of predicting

more Bt famities s theeedof theour:
However, most prediction methods except LactFP were restricted only to the prediction upto

class level (e.g. BLact-Pred, CNN-BLPred, PredLactamase, or subclass (e.g. BlaPred). LactFP
predicts the class, sub-class, and family of a BL protein on the basis of
presence of a family-specific motif called fingerprint in the primary amino

acid sequence.

B-LacFamPred: a machine learning based classifier that can annotate BLs up
to the family level. B-LacFamPred can be used on both genomic and proteomic

data.




Workflow

(A)
Dataset Compilation

aseqeleq
asewelsel-g

UniprotKB

Aaewd

aseqejeq
asuanbag

NCBI NR/NT

(B)

Data Classification

(€)
Model Building

Removed identical sequences from
each of 96 family

(D)

Performance Evaluation

b

Divided into 4 Ambler’s classes

S S

Multiple Sequence Alignment
(MSA) of

96 families

Leave-one-out cross validation

during model building

Best-hit calculation

families: 236

Number of B-lactamases

Data filterin

Families Families

with one with <5

sequence sequences
(132) (8)

Families

with 25
sequences
(96)

b 4

Selected

‘ Discarded from study

Families

60 Families | 15 Families (19 Families | 2 Families

Protein Sequences

4404 881 2438 337

sequences sequences sequences | Sequences

Benchmarking of final model with

an independent dataset

Profile HMM building and
calibration of

each family

Case study: 1. Non-B-lactam
hydrolyzing family members

2. Proteome-wide screening

Comparative performance evaluation
with motif based p-lactamase family

prediction tool

workflow depicting the methodology used for developing -LacFamPred



Training Dataset

The family-wise sequences of BLs were obtained from BLDB & CBMAR databases. The number of
protein sequences in each family was also augmented from CARD, UniProtkKB, and NCBI
NR databases. Sequences of each family were manually curated using literature and
UniProtKB annotations. We also removed the fragmented sequences from each

family:

Total Families with Families with Families with
Class | Sub-class - <5
Families ohe sequence =5 sequences
sequences
* =
A - od4# ;713 17# 0 47# + 13* = 60
* =
Bl 20# ;535 11# + 31* =42 3* 9# + 1* =10
B B2 3#+3*=0 2# + 2% =4 1* 1#
* =
B3 13% ;542 O# +38% =47 | 1#+3*=4 | 3#+1¥=4
C -- 14# + 9* = 23 4# 0 10# + 9* =19
D Statistics OEEI:I-L%Q“:Iﬁ)S retrlev&a&from CBMAR %nd BLDP databfges.
BL families with less than five sequences or single sequences were also removed
from further studies. If multiple copies of identical sequences were present in a family, then all

ExXcept one Sequence were removed.
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The combined phylogeny of all 96 pHMMs displays the overall topology of the phylogeny of 96 HMMs, which further confirmed the
evolution of all families divided into various groups. The inferred phylogeny displays the presence of four main classes A, B, C & D also
seen as the relationship among the families in the tree which also support our study for making the conclusion of a family-wise prediction
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Benchmarking Independent

Dataset

> We used the reference bla gene sequences obtained from Lee et al. (Lee et al., 2015
Antimicrobial Agents and Chemotherapy) for benchmarking.

-» These BL sequences were used to develop molecular probes for PCR-based methods to
detect bla genes in various pathogenic isolates.

-» The total number of bla gene sequences were 1342, belonging to all four Ambler's classes, A-D, and
29 families of BLs.

Methodolog

Xonstruction of the B-LacFamPred HMMs

» Sequences of each BL family were multiply aligned using the Muscle 3.8 program at default
parameters.

AAAAAAAA

Compéarative Evaluation

» We compared the performance of B-LacFamPred with well-known ARG annotation methods:
AMRFinderPlus, RGI-CARD, ResFinder, and Meta-MARC.

» We have also included LactFP as it assigns the family of a BL sequence based on the presence of a

Functional Annotation
» All 96 BL HMMs were annotated using (a) ARG databases, namely DeepARG - ARGminer, CARD,
ARDB, (b) UniProtKB, and (c) published research papers.
> The annotation details mentioned with each HMM are resistance mechanisms, class, and
name of antibiotic against which the family confers the resistance, family, class,
subclass, and phenotypic information as per Jacoby and Bush classification
scheme.
» Each HMM was also tagged with the information of their action in terms of their spectrum,
— namely broad spectrum, extended spectrum;, and marrow spectrum.———————



https://paperpile.com/c/5nrbl2/E14QC
http://paperpile.com/b/5nrbl2/E14QC
https://paperpile.com/c/5nrbl2/E14QC

Contd..

Cross-validation and Performance Metrics
» o test the efficiency of each HMM in discriminating between the family and non-family members, we
used the leave-one-out approach of cross-validation (LOOCV). The performance of
methods was assessed using the standard evaluation metrics namely, precision, recall,

——accuracy, and Fl-score: -
Case Study Performance evaluation on homologous
#1 dataset

- To further assess the capability of B-LacFamPred for identifying BL class, subclass, and families, we
performed an additional independent evaluation using a Penicillin-Binding Proteins (PBPs) dataset. PBPs
are membrane-associated proteins involved in the biosynthesis of peptidoglycan components of
bacterial cell walls. PBP and BLs belong to the superfamily of serine penicillin-recognizing enzymes and
have similar conserved protein folds.

- PBP and BLs are homologous proteins, but PBP does not provide antibiotic resistance against BLs. Also,
BLs are considered to have evolved from penicillin-binding proteins. PBPs were not part of the dataset
on which B-LacFamPred prediction models were developed.

ot 277 7T mtquences, only four were wrongly predicted as BLs.
Case Study #2

To confirm the discriminatory capability of B-lactamase, and non-B-lactamase, we created a second
independent dataset consisting of glyoxalase Il, which belongs to the metallo-beta-lactamase (MBL)
superfamily of proteins. The sequences of the glyoxalase Il were retrieved from the UniProtKB database.

We found a total of 57 full-length sequences of glyoxalase Il. At e-value 1e-15 none of the glyoxalase Il
sequences were predicted as BL. When e-value was increased to 1e-10, 1e-6 and 0.1 the number gradually
increased to 17, 43 and 43 respectively. The result was consistent with previous work that had shown the
requirement of more stringent e-value cutoff to reduce the number of false positive predictions (Gibson et al.,

2015 McArthuretat 2013 Zankarietat2012);



https://paperpile.com/c/5nrbl2/TOmsP+eJUr8+aJ7jd

Performance Comparison with Existing

Method Typeof | TP | FP | Mehodsn [, .. -
data Recall Accurac
n o measure
(%) (%) (%) 4
B-LacFamPred 132 | 22 | 37554 | 22 | 98.36 | 98.36 | 98.36 0.99
0 % % %
Protein
RGI-CARD Seqe“:“’: 1115 | 227 | 37349 | 227 | 83.08% | 83.08% | 83.08% 0.98
AMRFinderPlu 1026 | 316 | 37260 | 316 | 76.45% | 76.45% | 76.45% 0.99
S
LactFP 742 | 600 | 36976 | 600 | 55.29% | 55.29% | 55.29% 0.96
B-LacFamPred 133 5 | 37571 | 5 99.62 | 99.62 | 99.62 0.99
Gene 7 % % %
sequenc
Meta-MARC es 1199 | 143 | 37433 | 143 | 89.34% | 89.34% | 89.34% 0.99
ResFinder 1242 | 100 | 37476 | 100 | 92.54% | 92.54% | 92.54% 0.99




Advantages and Limitations of Present and Previously Developed BL Family Prediction Method

Feature

LactFP

B-LacFamPred

Training data source

UniProtKB/TrEMBL

CBMAR, BLDB, CARD, UniProtKB, NCBI

NR/NT
Total dataset 605 8060
Less than 5 sequence family Yes No
used
One sequence family used No No
Similarity tool and threshold Blast (1e-4) Blast (1e-6)
used
Total families 71 96
Benchmark data source None Lee et al. (2015)

Data redundancy threshold

Not mentioned

CD HIT (100%)

Tool used to develop prediction

Model Meme/Mast HMM
Leave-one-out cross
Cross-validation method No . .
r validatio € validation (LOOCV)
Web Server Yes Yes
ly Protei
Input data Only Protein Protein/Gene sequences

sequences




Proteome-wide screening of B-Lactamases

Recently (Y. Wang et al., 2021) developed a method deep learning-based method,
DeepBL, for predicting and classifying BLs on the basis of their protein sequences.

To characterize the complete repertoire of BLs, they annotated all reviewed bacterial
protein sequences (334542 in total) from the UniProtkKB database.

Number of
. |Number of proteins| Number of class .l.lm .Er > :
Number of proteins , : families in which
. : predicted as BL by | B predicted as :
Ambler’s | predicted as BL by , ) predicted BLs
p-LacFamPred/ BL and their g
Class | DeepBL/ Annotated were distributed
3 Annotated as BL sub-class
as BL by UniProt \ . as per
by UniProt prediction
p-LacFamPred
A 2876/80 86/77 - 26
21 (BI) 5
B 665/91 246/145 2 (B2) ]
223 (B3) 3
C 335/13 67/15 - 10
D 231/15 29/15 - 2
Total 4107/199 428/252 246 47

Number of proteins predicted as BL by DeepBL and f-LacFamPred and annotation

statistics of UniProt therein




Comparative prediction outputs
of DeepBL,
UniProtKB and 3-LacFamPred

Not Class-B

The

q \ m FEEQICTION TO01%
A DeepBL UniProtKB f-LacFamPred
(lass-A —
Q9EZQ7 (lags A Beta r'\;-|-'|\ ClassA | - AST
|actamase '
Clas-A Beta-lactamase
2 (098424 Class A Beta- i | (Class A SHV
SHV-13
Lactamase
Clats-A Beta-lactamase
3 P28585 (Class A Beta- sy g (TXM

1. AGVT07 Beta- Beta- Metallo- ClassB | S90- |
Beta-Lactamase class B3
Lactamase Lactamase
Not Class-B Metallo- Sub-
12, 031760 Beta- Beta- Beta-Lactamase | Class B IMP
class Bl
Lactamase Lactamase

results showed that the number of false positive predictions in

B-LacFamPred was significantly lower than DeepBL and
B-LacFamPred can be used to predict and annotate new BLs that
are not known yet.

Gtf3 glucosyl-

13. AOAOHZUR93 Class A “E’:;Z:;: 3 transferase Non-Beta-Lactamase
o ) family
Not L-thammose Rhamnose
14. B614P3 Beta- ) ) mutarotase Non-Beta-Lactamase
mutarofase AR
Lactamase family
No Magnetosome | Major facilitator
15. VoF4w4 Beta- e ) ; Non-Beta-Lactamase
Lactaiass protein MamZ superfamily

(lass-B Metallo- gl
6 | P98 | ClassB | PBe | BetaLactamase | ClassB | . | CPHA
class B2
Lactamase | type 2 cphA
(lass-B Metallo- Sub.
7. | ADADIGZECY | Class A Beta- Beta-Lactamase | ClassB | , . [ CPHA
class B2
Lactamase | type 2 cphA
ClassC Bela-lactamase
8 | 003465 | ClassC | Be ioomicall ™ AmpC
. ampe
Lactamase
U Beta-lactamase
9 B3U538 (lass D Beta- o (s 0XA
OXA-133
Lactamase
ClassD Beta-lactamase
10, 00983 (lssD Beta- ‘I(‘“I{l‘“ ClassD LCR
Lactamase -




B-LacFamPred Web-server and Standalone Tool

o
s

—> [ —

The overall schema of the prediction

methodology of the tool




Screenshot of web-tool Web Link:

http://proteininformatics.org/mkumar/blacfampred

B-lacFamPred: HMM based prediction and annotation tool for fi-lactamase families
| ] | : :

How to use this tool

B-lacFamPred find the associated betalactamase families of your protein /gene sequences. This webtool can only predict up to 10
sequences at a time and if a user gives more than 10 sequences, it will automatically predict only first 10 sequences. Please use

Description

standalone version for batchmode prediction of Beta-lactamase families B-lacFamPred.

Job Launcher

>sp|Q9EZQ7 | BLAC_NOCAS Beta-lactamase AST-1
OS=Nocardia asteroides GN=bla PE=l §

TSGARLGVFAVD'
HPLSTGYFDQVI A

i
Enter sequence below in FASTA format ( ">' is mandatory) /

Quick Guide

Paste your single/multiple protein/
gene sequence in fasta format

Select sequence fasta file
(Protein/Gene)

EYS TGMTVRELCDAAITVSDNTAGNQLLKLLG
Select Sequence (Fasta File) |Proterv | / _____————‘

Select HMM Profile | Protein HMM Model W |

Advanced Search Options
(Use below options for advanced search)

Select HMM profile (Protein/Gene)

Select e-value [ 0.1 v ‘

Set number of hits |1 v |

Please be cautious higher the e-value would result in low scores predictions, while lower e-
value would result in high score predictions.

For more than one sequence, please do not set number of hits 1 depending on your query
sequences please set the number of hits. Let suppose you have submitted 10 sequences so

accordingly

Advanced search options user can set
e-value thresholds and number of hits

Browse protein/gene sequence file

please set 10 number of hits

OR Upload Sequence (FASTA) File: | Cheose File | No file chosen

| ciear | | Submit | ‘

Query submit for prediction

NA denotes Not Available

fB-lacFamHMM profiles producing significant HITS with detailed annotation '

Result of submitted query

[ UserQuery [ frlacFamHMM Name | Class [ Sobfamily [  GeneName [ Antibiotic Resistance | AntibioticClass [  Definition [ Family [ Phenotype [ Functional Information | E-value I Score ]
| QIEZQT lcLASSA_AST [Class A INA JasT-1 Penam Ic: INA [AST Beta-lactamase INA |Broad spectrum [2.4e-203 |666.5 |

If you have any query, suggestions or bug reports, please contact Dr. Manish Kumar [manish{at}south.du.ac.in]

A snapshot of the search and prediction page of the 'B-LacFamPred' web

server
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