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Antimicrobial resistance (AMR) is one of the most serious public health threats of 
the twenty-first century. A systematic review published recently in the The Lancet 
reveals, its global impact is far greater than many infectious diseases such as 
malaria and AIDS.

Resistance to antimicrobial agents has become a major source of morbidity and 
mortality worldwide.

Antibiotic resistance remains a public health threat during the Coronavirus disease 
2019 (COVID-19) pandemic. The ongoing (COVID-19) pandemic has further 
complicated the situation.
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❖ Bacterial resistance is considered a major concern in 
healthcare organizations. Specially gram-negative bacteria are a 
leading cause of life-threatening infections and include nosocomial 
infect ions (NI) ,  ur inary tract  infect ions (UTIs) , 
nosocomial pneumonia (NP), and other inflammatory diseases. 
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To design an in-silico resource to discern 
diversity of antibiotic resistance genes in 

various -omics datasets

Pandey D.  et.  a l .  B iology Methods & 
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❖ The prominent ones being Antibiotic Resistance Genes Database (ARDB), 
Comprehensive β-lactamase Molecular Annotation Resource (CBMAR), ResFinder, 
Comprehensive Antibiotic Resistance Database (CARD), Resfams, Metagenomic 
Markov models for Antimicrobial Resistance Characterization (Meta-MARC), 
Antimicrobial Resistance Gene Finder (AMRFinderPlus) etc.

Problem Statement & Genesis of Present 
Resource

Limitations associated with previous methods such as:
1. ARDB is no longer updated (Last Update: 2009), and its data is incorporated in 

the CARD database. 
2. Resfams is a database of hidden Markov models (HMMs) developed 

using the  166 protein families  associated with antibiotic 
resistance (Last Update: 2014).

3. Meta-MARC is based on hierarchical HMMs, which can predict AMR in metagenomic 
data (either a short read or a longer assembled contig) into resistance class, group, 
and mechanism. But Meta-MARC result indicated high false positive 
prediction and no user-friendly interface is available. 

4. AMRFinderPlus identifies acquired AMR genes and resistance-associated point 
mutations in protein or assembled nucleotide sequences. But this tool is 
difficult for non-programmers.

5. CARD identifies and annotates ARGs using BLAST. But sequence alignment 
methods like BLAST work well in comparing sequences with a high 
degree of similarity (60% or higher) but do not identify a distant 
homolog.

6. Also, we found that several resources can identify/characterize resistance 
only against the prominent/frequently prescribed antibiotics. 





Classification of whole 
sequences

Given:
– a set of classes C and 
– a number of example sequences in each class,

train a model so that for an unseen sequence we can say to which class it belongs
Example:

– Given a set of protein families, find family of a new protein
– Given a sequence of packets, label session as intrusion or normal
– Given several utterances of a set of words, classify a new utterance to the right word













































❖ Thus ,  we have  descr ibed  a  new in -s i l ico  too l  fo r  rapid monitoring, 
characterization, and surveillance of all bacterial antibiotic resistance 
genes (ARGs) which named as Bacterial Antibiotic Resistance scan (BacARscan).

❖ This tool has the edge over its predecessors as it can also discern 
ARGs in short sequencing reads and fragmented contigs. 

❖ BacARscan can be easily integrated into a user-defined ARG annotation 
pipeline for the detection of ARG variants in the microbial genomes.

Motivatio
n

Schema of the tool
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Distribution of ARG HMM profiles 
into various antibiotic classes. The 

numerical value indicates the number of HMM 
that inactivates the antibiotic

ARGhmm profiles includes:

❖ C l a s s  a n d  s u b c l a s s  o f 
antibiotics against which the 
query proteins/genes impart 
resistance

❖ Resistance mechanism
❖ Ant im ic rob ia l  re s i s t an ce 

spectrum
❖ AMR protein name & families 
❖ Function of AMR genes
❖ U n i P ro t  I D  a g a i n s t  e a c h 

ARGhmm

Functional annotation of protein (p) and nucleotide (n) 
ARGhmm
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Comparison of Resfams and BacARscan profiles - HMM models 
on the basis of their resistance mechanism

Pandey D.  et .  a l .  B io logy Methods  & 
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 Benchmark Datasets
Dataset-I: 
Evaluation 
dataset 
Positive dataset: 
Protein clusters ≥ 5 
sequences
Negative dataset: 
Protein clusters < 5 
sequences

Dataset-II: 
Short sequence 
reads
From back-
translation of 
positive and 
negative data
Length: 100 nt
Each sequence: 
20 short 
sequences

Dataset-
III:Independent 
dataset
1) 60 Penicillin-binding 
proteins (PBPs) or DD-
peptidase
2) 369 Non-antibiotic 
resistant bacterial 
efflux Pandey et al., 
Sci. Rep. 2020)

Dataset-IV: 
Annotation of 
ARGs in 
different strains 
of ESKAPE 
pathogens
Five proteomes 
of each 
organism of 
ESKAPE 
pathogens. 

Total 30 
proteomeDataset-V: Validation Dataset 

To benchmark BacARscan vis-a-vis other ARG prediction and 
annotation methods. 
Source: CARD database (date: 29-07-2022) 4422 ARG 
sequences. 
Short reads of 151nt length at 20x coverage were simulated. 
100,000 short reads randomly selected for benchmarking.

Simulated Non-ARG short-read Data: 
Source: 2 million short-reads from complete genome of a 
probiotic strain of Enterococcus faecium Strain T-110 (NCBI 
Genome Accession Number: CP006030) Natarajan et.al. (2015)
The comparative evaluation was carried out among BacARscan, 
Meta-MARC, and ResFinder

Dataset VI: 
Clinical 
metagenomic 
data
16 metagenomic 
samples from 
human patients 
of 
cholecystectomy, 
six from human 
bile and five 
from gut and 
saliva each.
(Kujiraoka et al., 
2017; Frontiers in 
Microbiology).
(DDBJ Accession: 
DRA005134). Pandey D.  et .  a l .  B io logy Methods  & 

Protocol; 2022



Modules pARGhmm nARGhmm
Paramete

rs True 
Positi

ve

Fals
e 

Posit
ive

Precis
ion(%)

F-
measure 

(%)

Tru
e 

Pos
itiv
e

Fals
e 

Posi
tive

Precisi
on(%)

F-
measur

e (%)No. of 
top hits

1 228 26 89.76% 94.60% 231 23 90.94% 95.25%

3 229 25 90.15% 94.82% 235 19 92.51% 96.11%

5 234 20 92.12
% 95.90% 237 17 93.30% 96.53%

7 233 21 91.73% 95.68% 236 18 92.91% 96.32%

9 232 22 91.33% 95.47% 240 14 94.48% 97.16%
11 209 45 82.28% 90.28% 241 13 94.88% 97.37%

13 182 72 71.65% 83.48% 240 14 94.48% 97.16%

15 158 96 62.20% 76.69% 238 16 93.70% 96.74%

    Performance  of  BacARscan  (pARGhmm  & 
nARGhmm)

Dataset-I: Evaluation dataset 
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Method Type of 
dataset 

used

True 
Negativ

e

False 
Positiv

e

True 
Negative 
Rate (%)

False 
Positive 
Rate (%)

BacARscan 
Penicillin-
binding 
proteins 
(PBPs) 

54 06 90% 10%

AMRFinderPl
us

48 12 80% 20%

Meta-MARC 51 09 85% 15%

RGI-CARD 45 15 75% 25%

Resfams 56 04 93.33% 6.67% 
BacARscan

Non-
antibiotic 

efflux 
proteins  

(non-ARE)

366 23 94.08% 5.91%

AMRFinderPl
us

352 37 90.48% 9.51% 

Meta-MARC 363 26 93.31% 6.68% 

RGI-CARD 298 91 76.60% 23.39% 

Resfams 365 24 93.83% 6.16%

       Comparison of proposed method BacARscan with 
existing methods using homologous sequences

Dataset-III:Independent dataset

Pandey D.  et .  a l .  B io logy Methods  & 
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E-
value 

Thresh
old

# of 
simulate
d reads

# of reads predicted (Hits 
Found)

BacARsca
n

Meta-
MARC

ResFi
nder

1e-6
100000 
AR Short 

Reads

58703 69294 88831

1e-3 66802 77667 89580

Defaul
t (10)

78680 89778 99875

E-value 
Thresho

ld Tools

# of Reads Predicted (Hits Found) & Unique 
ARGs 

# of 
Reads 

Predicted

# of 
Unique 
ARGs 

False 
Positive Rate 

(%)

True 
Negative 

Rate 
(%)

1e-6

BacARscan 3979 19 0.20% 99.80%
Meta-MARC 22331 56 1.12% 98.88%
ResFinder 1912 5 0.10% 99.90%

1e-20
BacARscan 238 3 0.02% 99.98%
Meta-MARC 9034 18 0.46% 99.54%
ResFinder 1648 3 0.09% 99.91%

1e-50
BacARscan 0 0 0 0
Meta-MARC 0 0 0 0
ResFinder 1500 3 0.08% 99.92%

P e r f o r m a n c e  o f 
BacARscan and other off-
t h e - s h e l f  t o o l s  i n 
p red i c t i ng  an t i b i o t i c 
resistance, an external 
test set of ARG short-read 
data

Performance 
of BacARscan 
and other off-
the-shelf tools 
in predicting 
a n t i b i o t i c 
resistance in 
a n  e x t e r n a l 
t e s t  s e t  o f 
N o n - A R G 
s h o r t - r e a d 
dataPandey D.  et .  a l .  B io logy Methods  & 

Protocol; 2022



Comparison of prediction of ARGs and their resistance 
mechanism pattern between Resfams and BacARscan on 

ESKAPE pathogens 

Dataset-IV: Annotation of ARGs of 30 proteomes of 
ESKAPE pathogens

Pandey D.  et .  a l .  B io logy Methods  & 
Protocol; 2022



P: PatientKujiraoka, M. et al. Front. Microbiol. 8, 685 
(2017)

Dataset VI: Clinical metagenomic data
Comparative evaluation of prediction efficiency of 

BacARscan on metagenomic data

Pandey D.  et .  a l .  B io logy Methods  & 
Protocol; 2022



Web interface and standalone 
tool

➔ In the BacARscan web tool, a 
user has the option to choose 
between query sequence type 
and nature of HMM-profi les 
(either ‘Protein/pARGhmm’ or 
‘Gene/nARGhmm’). 

➔ The web platform of BacARscan 
can process 100 sequences at a 
time

➔ For large dataset standalone version

Prediction schema of 
BacARscan

Speed 
Assessment

➔ 30  complete  proteomes  (6 
ESKAPE organisms × 5 different 
strains) containing 1,28,305 
nearly 31 minutes to complete the 
annotation of all 30 proteomes, ~ 
one minute per proteome. 

➔ Intel(R) Xeon(R) 4 Core E5507 
2.27 GHz processor with 6GB 
DDR4 RAM,  64 -b i t  Red  Hat 
Enterpr ise L inux operat ing 
system (Release 6.2). 

Pandey D. et. al. Biology Methods 
& Protocol; 2022



Home Page

Web Interface

Web Link: 
http://www.proteininformatics.org/mkumar/bacarscan/

            Github Link: 
https://github.com/mkubiophysics/BacARscan/

Submission 
Page

Result Page

Pandey D. et. al. Biology Methods 
& Protocol; 2022



Conclusions

● Can identify ARGs in an -omics (proteomics/genomics and metagenomic) datasets. 
● BacARscan can also be combined with traditional surveillance and thus can 

complement the traditional methods of ARG annotation. 

P o t e n t i a l  u s e  o f 
BacARscan

Pandey D. et. al. Biology Methods & 
Protocol; 2022

● BacARscan: in-silico ARG annotation resource that can be used for rapid 
monitoring, surveillance, and characterization of antibiotic resistance 
determinants in both genomics and proteomic datasets. 

● Current version of BacARscan supports prediction using 254 ARG families.
● Comparison with other in-silico resources like AMRFinderPlus, Meta-MARC, Resfams, 

and CARD revealed that BacARscan’s ability to discern ARGs in -omics 
datasets was much more significant than its predecessors. Also it indicated 
less false positive prediction of ARG by BacARscan vis-a-vis other methods.

● One of the most notable improvements of BacARscan over other ARG annotation methods is 
its ability to work on both genomes and short reads sequence libraries with equal efficiency 
and without any requirement for assembly of short reads. 



To develop a two-tier system to predict and categorize 
bacterial efflux-mediated 

antibiotic resistance proteins and their families

Pandey D. et. al. Scientific Reports; 2020
P a n d e y  D .  e t .  a l .  N a t u r e  P r o t o c o l 
Exchange; 2021



● Efflux proteins are present in both Gram-positive and Gram-negative 
bacteria. 

● Prokaryotic Efflux pumps are divided into five classes: Major facilitator 
superfamily (MFS), ATP ­binding cassette (ABC) superfamily, Small 
multidrug resistance (SMR) family, Resistance­ nodulation cell division 
(RND) superfamily, Multi­ antimicrobial extension (MATE).

● Efflux protein pumps constitute between 6-18% of all the transporters present in any 
bacterial species. Efflux pumps might be specific for one substrate or may transport a 
range of structurally dissimilar compounds (including antibiotics of multiple 
classes). Efflux pumps were associated with multiple drug resistance 
(MDR) in bacteria. 

● We could not find any in-silico tool that can discriminate bacterial 
antibiotic resistance efflux (ARE) proteins from efflux proteins which do 
not efflux out antibiotics (non-ARE), and/or can predict the family to 
which an ARE protein might belong.

Motivatio
n

● BacEffluxPred: a machine- learning based two-t ier  in-si l ico tool  that 
discriminates bacterial ARE proteins from non-ARE and also predicts 
its respective family. 

● BacEffluxPred completes a prediction cycle in two different tiers. 
● Tier-I: discrimination between ARE and non-ARE proteins
● Tier-II: prediction of ARE protein(s) family. 

Pandey D. et. al. Scientific Reports; 2020
P a n d e y  D .  e t .  a l .  N a t u r e  P r o t o c o l 
Exchange; 2021



BacEffluxPredWorkflo
w



T i e r - I  d a t a s e t 
compilation:  Numer ica l 
values indicate the number of 
p ro t e i n s .  A R E :  a n t i b i o t i c 
resistance efflux proteins, non-
ARE: non-antibiotic resistance 
eff lux proteins, non-eff lux: 
non-efflux prokaryotic proteins, 
a n d  n o n - E A R:  n o n - e f f l u x 
antibiotic resistance proteins.

T i e r - I I  d a t a s e t 
compilation:  Numer ica l 
values indicate the number of 
proteins. ABC, MFS, RND, MATE 
and SMR are eff lux protein 
families.

Data Sources and 
Compilation

Pandey D. et. al. Scientific Reports; 2020
P a n d e y  D .  e t .  a l .  N a t u r e  P r o t o c o l 
Exchange; 2021



Thre
shol

d

Tier Training Dataset Independent Testing Dataset

AC 
(%)

SEN 
(%)

SPE 
(%)

MC
C

AUC AC 
(%)

SEN 
(%)

SPE 
(%)

MC
C

AU
C

-0.4 Tier-I 85.81 80.23 86.84 0.57 0.87 94.24 86.84 95.61 0.79 0.95

-0.4 T

i

e

r

-

II

ABC 92.13 88.24 93.06 0.77 0.96 93.75 100.00 92.00 0.85 0.96

-0.3 MFS 85.39 87.50 83.67 0.71 0.92 93.75 93.33 94.12 0.87 0.97

-0.4 RND 91.01 90.00 91.30 0.76 0.94 93.75 100.00 92.00 0.85 1.00

0.3 MAT
E

99.44 95.00 100.00 0.97 0.99 100.00 100.00 100.00 1.00 1.00

Performance of SVM models at training and independent testing 
dataset during LOOCV at tier-I and II

The overall performance of SVM models during LOOCV at tier-I and tier-II. 
AC, SEN, SPE, MCC and AUC represent accuracy, sensitivity, specificity, 

Matthew’s correlation coefficient  (MCC) and area under ROC curve (AUC) 
respectivelyThe highly successful predictor will have MCC value near to 1, while 

opposite and random predictions have MCC value -1 and 0 
respectively



Tool 
Page 

Web Link: 
http://proteininformatics.org/mkumar/baceffluxpred

Pandey D. et. al. Scientific Reports; 2020
P a n d e y  D .  e t .  a l .  N a t u r e  P r o t o c o l 
Exchange; 2021



To design an online tool for the prediction and 
classification of β-Lactamase in class, subclass, 

and family

P a n d e y  D .  e t  a l .  Fr o n t i e r s  i n 
Microbiology, 2022 



β-lactams are the most commonly prescribed drug for treatment of Gram-negative 
bacterial infection. Despite 70 years of clinical use, β-lactam antibiotics still remain 
at the forefront of antimicrobial chemotherapy. 
The resistance against β-lactam antibiotics is due to development of a highly diverse group 
of enzymes, collectively called β-lactamases (BLs), that hydrolyze the amide 
bond of a β-Lactam ring to make it ineffective.

Motivatio
n

Over the years, several classification systems have been developed to classify BLs. 
However, the most popular schemes are:
(i) Ambler's classification scheme, which was based on the amino 
acid sequence similarity 
(ii) Bush, Jacoby, and Medeiros classification scheme, which was 
based on substrate and inhibitor profiles 
Ambler's classification scheme categorized BLs into four classes: A, B, C, and D. 
Class A, C, and D are also known as serine BLs because they have an active-
site serine to catalyze the hydrolysis. 
Class B BLs are known as Metallo β-Lactamases (MBLs) since they 
use zinc ions (Zn2+) for their activity. 
MBLs are distinct from the serine BL in sequence, structure fold, and catalytic 
mechanism and they are further divided into three subclasses, B1, B2, and B3, 
based on their active site geometry and overall homology.



• Several screening tests have been developed to identify the family of BLs at both gene and 
whole genome levels. However, these methods are resource and time-consuming. 

• An alternative approach for rapid annotation of BLs family is to use computational 
methods, which can quickly identify BLs genes/proteins and classify them into the family. 

• The most popular computational approach is using BLAST search against either general-
purpose molecular biology databases such as NCBI NR/NT or UniProtKB/Swiss 
Prot or BL-specific databases such as BLDB, BLAD, LacED, ARDB, CARD, and 
our laboratory has also developed a database of β–lactamases named 
CBMAR. 

β-LacFamPred: a machine learning based classifier that can annotate BLs up 
to the family level. β-LacFamPred can be used on both genomic and proteomic 
data. 

• However, most prediction methods except LactFP were restricted only to the prediction upto 
class level (e.g. βLact-Pred, CNN-BLPred, PredLactamase, or subclass (e.g. BlaPred). LactFP 
predicts the class, sub-class, and family of a BL protein on the basis of 
presence of a family-specific motif called fingerprint in the primary amino 
acid sequence.  

Motivatio
n

• However, there are a few limitations of LactFP. The most critical limitation 
of LactFP was that it was developed using a dataset compiled in 2014. Over 
time information about new family members and many mutations in different 
families has been accumulated in the databases. Hence LactFP might not be 
capable of predicting all BL families correctly. This indicates that a tool capable of predicting 
more BL families is the need of the hour.



Workflow

workflow depicting the methodology used for developing β-LacFamPred



Training Dataset

 Class Sub-class Total 
Families

Families with 
one sequence

Families with 
<5 

sequences

Families with 
≥5 sequences

A -- 64# + 13* = 
77 17# 0 47# + 13* = 60

B

B1 20# + 35* = 
55 11# + 31* = 42 3* 9# + 1* = 10

B2 3# + 3* = 6 2# + 2* = 4 1* 1#

B3 13# + 42* = 
55 9# +38* = 47 1# + 3* = 4 3# +1* = 4

C -- 14# + 9* = 23 4# 0 10# + 9* = 19
D -- 2# +18* =20 18* 0 2#

Total 236 132 8 96

 Statistics of BL families retrieved from CBMAR and BLDB databases. 
(Source: - #: CBMAR; *: BLDB)

The family-wise sequences of BLs were obtained from BLDB & CBMAR databases. The number of 
protein sequences in each family was also augmented from CARD, UniProtKB, and NCBI 
NR databases. Sequences of each family were manually curated using literature and 
UniProtKB annotations. We also removed the fragmented sequences from each 
family.

BL families with less than five sequences or single sequences were also removed 
from further studies. If multiple copies of identical sequences were present in a family, then all 
except one sequence were removed. 



CLASS A

CLASS B

CLASS C

Phylogenetic 
tree of all 
families

The combined phylogeny of all 96 pHMMs displays the overall topology of the phylogeny of 96 HMMs, which further confirmed the 
evolution of all families divided into various groups. The inferred phylogeny displays the presence of four main classes A, B, C & D also 
seen as the relationship among the families in the tree which also support our study for making the conclusion of a family-wise prediction 
engine. To further assess the clear sight of relationships among the families we made a phylogeny of each class that also supports the 
class-wise conservation of families.



➔ We used the reference bla gene sequences obtained from Lee et al. (Lee et al., 2015 
Antimicrobial Agents and Chemotherapy) for benchmarking. 

➔ These BL sequences were used to develop molecular probes for PCR-based methods to 
detect bla genes in various pathogenic isolates. 

➔ The total number of bla gene sequences were 1342, belonging to all four Ambler's classes, A-D, and 
29 families of BLs. 

Benchmarking Independent 
Dataset

Comparative Evaluation 
➔ We compared the performance of β-LacFamPred with well-known ARG annotation methods: 

AMRFinderPlus, RGI-CARD, ResFinder, and Meta-MARC. 
➔ We have also included LactFP as it assigns the family of a BL sequence based on the presence of a 

conserved motif. 
➔ The comparative evaluation was done on the independent test dataset consisting of 1342 BL 

protein/gene sequences that belong to 29 BL families.

Construction of the β-LacFamPred HMMs 
➔ Sequences of each BL family were multiply aligned using the Muscle 3.8 program at default 

parameters. 
➔ Using the hmmbuild function of the HMMER tool (version 3.1), we build HMM models of each family of 

BLs. 

Methodolog
y

Functional Annotation 
➔ All 96 BL HMMs were annotated using (a) ARG databases, namely DeepARG - ARGminer, CARD, 

ARDB, (b) UniProtKB, and (c) published research papers. 
➔ The annotation details mentioned with each HMM are resistance mechanisms, class, and 

name of antibiotic against which the family confers the resistance, family, class, 
subclass, and phenotypic information as per Jacoby and Bush classification 
scheme. 

➔ Each HMM was also tagged with the information of their action in terms of their spectrum, 
namely broad spectrum, extended spectrum, and narrow spectrum.

https://paperpile.com/c/5nrbl2/E14QC
http://paperpile.com/b/5nrbl2/E14QC
https://paperpile.com/c/5nrbl2/E14QC


• To further assess the capability of β-LacFamPred for identifying BL class, subclass, and families, we 
performed an additional independent evaluation using a Penicillin-Binding Proteins (PBPs) dataset. PBPs 
are membrane-associated proteins involved in the biosynthesis of peptidoglycan components of 
bacterial cell walls. PBP and BLs belong to the superfamily of serine penicillin-recognizing enzymes and 
have similar conserved protein folds. 

• PBP and BLs are homologous proteins, but PBP does not provide antibiotic resistance against BLs. Also, 
BLs are considered to have evolved from penicillin-binding proteins. PBPs were not part of the dataset 
on which β-LacFamPred prediction models were developed. 

• Out of 60 PBP sequences, only four were wrongly predicted as BLs. 

To confirm the discriminatory capability of β-lactamase, and non-β-lactamase, we created a second 
independent dataset consisting of glyoxalase II, which belongs to the metallo-beta-lactamase (MBL) 
superfamily of proteins. The sequences of the glyoxalase II were retrieved from the UniProtKB database. 
We found a total of 57 full-length sequences of glyoxalase II. At e-value 1e-15 none of the glyoxalase II 
sequences were predicted as BL. When e-value was increased to 1e-10, 1e-6 and 0.1 the number gradually 
increased to 17, 43 and 43 respectively. The result was consistent with previous work that had shown the 
requirement of more stringent e-value cutoff to reduce the number of false positive predictions (Gibson et al., 
2015; McArthur et al., 2013; Zankari et al., 2012).

Case Study 
#1

Case Study #2

 Performance evaluation on homologous 
dataset 

Cross-validation and Performance Metrics
➔ To test the efficiency of each HMM in discriminating between the family and non-family members, we 

used the leave-one-out approach of cross-validation (LOOCV). The performance of 
methods was assessed using the standard evaluation metrics namely, precision, recall, 
accuracy, and F1 score.

Contd..

https://paperpile.com/c/5nrbl2/TOmsP+eJUr8+aJ7jd


Method Type of 
data

TP FP TN FN Precisio
n

(%)

Recall
(%)

F-
measure

(%)

Accurac
y

β-LacFamPred 

Protein 
sequenc

es

132
0

22 37554 22 98.36
%

98.36
%

98.36
%

0.99

RGI-CARD 1115 227 37349 227 83.08% 83.08% 83.08% 0.98

AMRFinderPlu
s

1026 316 37260 316 76.45% 76.45% 76.45% 0.99

LactFP 742 600 36976 600 55.29% 55.29% 55.29% 0.96

β-LacFamPred 
Gene 

sequenc
es 

133
7

5 37571 5 99.62
%

99.62
%

99.62
%

0.99

Meta-MARC 1199 143 37433 143 89.34% 89.34% 89.34% 0.99

ResFinder 1242 100 37476 100 92.54% 92.54% 92.54% 0.99

Performance Comparison with Existing 
Methods



Feature LactFP β-LacFamPred

Training data source UniProtKB/TrEMBL CBMAR, BLDB, CARD, UniProtKB, NCBI 
NR/NT

Total dataset 605 8060
Less than 5 sequence family 

used Yes No

One sequence family used No No
Similarity tool and threshold 

used Blast (1e-4) Blast (1e-6)

Total families 71 96
Benchmark data source None Lee et al. (2015)

Data redundancy threshold Not mentioned CD HIT (100%)
Tool used to develop prediction 

Model Meme/Mast HMM

Cross-validation method No Leave-one-out cross 
validation (LOOCV)

Web Server Yes Yes

Input data Only Protein 
sequences Protein/Gene sequences

Advantages and Limitations of Present and Previously Developed BL Family Prediction Method



Proteome-wide screening of β-Lactamases

Number of proteins predicted as BL by DeepBL and β-LacFamPred and annotation 
statistics of UniProt therein  

Recently (Y. Wang et al., 2021) developed a method deep learning-based method, 
DeepBL, for predicting and classifying BLs on the basis of their protein sequences.

To characterize the complete repertoire of BLs, they annotated all reviewed bacterial 
protein sequences (334542 in total) from the UniProtKB database.



Comparative prediction outputs 
of DeepBL,

UniProtKB and β-LacFamPred

The results showed that the number of false positive predictions in 
β–LacFamPred was s igni f icant ly  lower  than DeepBL and 
β–LacFamPred can be used to predict and annotate new BLs that 
are not known yet.



The overall schema of the prediction 
methodology of the tool

β-LacFamPred Web-server and Standalone Tool



Screenshot of web-tool Web Link: 
http://proteininformatics.org/mkumar/blacfampred

A snapshot of the search and prediction page of the 'β-LacFamPred' web 
server
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