
Introduction to Linear Classifiers
and

Key Deep Learning Concepts
(12 September 2023)

Shweta Birla Dhakonia, Ph.D.
Senior Project Scientist

Translational Bioinformatics Group,
ICGEB, India

Data & Machine Learning
Data

 Generated at an unprecedented rate - technological

advancements & and increasing digitalization

 Enormity and complexity- surpass the human ability to

decipher hidden relevance/significance

www.cloudduggu.com

Machine learning (ML)

 To build models/machines that can learn from data and

make predictions.

 Designed to analyze large and complex datasets, discover

patterns, make predictions, and automate decision-

making, - extremely challenging to do at scale.

Decision boundaries
• Ability to create imaginary lines called “Decision Boundaries”

• Primary Goal: to differentiate or classify data into distinct categories

• Classifiers (algorithms): linear classifiers non-linear classifiers

(vitalflux.com)

Nonlinear ClassifierLinear ClassifierCharacteristic
Nonlinear (e.g., curves, circles, complex
shapes)Linear (e.g., straight line, hyperplane)Decision Boundary

Decision Trees, Random Forest, Kernel
SVM, Neural Networks

Logistic Regression, Linear SVM,
PerceptronCommon Models

Suitable when data exhibits complex or
nonlinear patterns

Suitable when data has approximately
linear relationshipsUse Cases

Image recognition, speech recognition,
natural language processing, complex
pattern recognition

Basic image classification, spam email
detection, sentiment analysisExamples of Use

May be less interpretable due to
complexity

Often more interpretable due to
simplicityInterpretability

Higher computational demands, especially
for deep neural networksLower computational demandsComputational Demands

Classifiers

Linear Classifiers (LC)

• Family of algorithms that learn to separate data into distinct classes
• Predictions - a linear combination of input features
• Define a decision boundary can be visualized by plotting the data in N dimensions
• Some popular linear classifiers include SVM, logistic regression, and perceptron

“Foundation of many ML models essential for building intelligent systems”

A line in 2D A plane in 3D A hyperplane in higher dimensions

“ Key idea is to find a linear decision boundary that separates different classes”

LC: Perceptron
• Perceptron mimics the way the human brain learns

• Developed in the 1950s to simulate the process of neural learning

• It was the first algorithm capable of learning from data and making predictions

• It provides a simple but powerful model for classification tasks

Neuron - a building block of the brain Perceptron forms a basic unit of NN

LC: Perceptron
The perceptron consists of 4 parts:

1) Input values/one input layer 2)Weights and Bias

3)Net sum 4) Activation Function.

• Takes inputs, multiplies them by weights, adds a bias,

sums them up, and then passes the result through an

activation function =Output is binary (0 or 1).

• Weights: control the contribution of individual features to the decision boundary.

• Bias: shifts the decision boundary, allowing for more flexibility in classification. Both must be carefully tuned

for best results.

[wolframalpha.com]

Output = sigmoid(sum)

x2

x1
0

Throat
Cancer

x10 x10

• SVM: Powerful linear classification algorithm

• Aims: To find a hyperplane that maximizes the margin between different classes

• Kernel function to project the data into a higher-dimensional space where the problem of finding a

linear discriminant becomes easier

• Effective for binary and multiclass classification tasks

LC: Support Vector Machines (SVM)

Next hands-on: Building a linear classifier
using perceptron and SVM

Neural Network

inputinput Final
Output
Layer

• Many perceptrons combine together = NN.

• NN works the same way as the perceptron.

Forward Propagation
Essential concepts in the context of working of perceptron:

1.Forward Propagation:

“ During training: how data is fed forward through the network”

• What it is: process of giving input data, multiplying it by

weights, adding bias, summing up, applying activation functions,

and getting final prediction/output.

• Weights: control the features contribution to decision boundary.

• Bias: shifts the decision boundary allowing flexibility.

• Activation Function: “Heart”
www.datacamp.com

Activation Function
• An activation function - binary switch for a perceptron -

"on" or "off" based on its input.

• This function introduces non-linearity enabling NN to

capture complex patterns - like image recognition and

natural language processing.

• Types of activation function:

“Deciding authority”

Understanding Loss Function
“Measures how bad our model is at its job”

• After Forward Propagation:
1)Predicted Output = Actual Output, 2) Predicted Output ≠ Actual Output

• Loss functions = difference between predicted and actual values. Higher value = bad model, lower value = good model

• Common loss functions include mean squared error, cross-entropy, and hinge.

Loss Function Output Type Problem Type

Mean Squared Error Continuous Regression

Cross-Entropy Binary or Multiclass Classification

Hinge Binary or Multiclass Classification
www.datacamp.com

Truck

Goal

To minimize the loss

function so that the

model fits the data

as best as possible

“drives next part”

Backward Propagation
2. Backward Propagation (Backpropagation):

“Responsible for learning from the mistakes (errors) made during
FP by adjusting the network's weights to minimize those errors”

What it is: Process involves calculating LF gradients (derivatives)/
how each weight in the network contributed to this error.

Steps:

• Gradient Calculation: Computes gradients of the loss w.r.t.

model parameters (weights and biases), indicating how to

adjust them.

• Backward Pass: Passing gradients backward.

• Weight Update: Optimizes weights and biases with an

algorithm like gradient descent to reduce the loss.

• Iteration: Steps repeated over the training data until the

network minimizes its loss, improving its performance.

• Step-by-step process by optimization algorithms (gradient descent) - teach the model - minimize the loss.

• Making small adjustments in weights and biases - reduce the mistakes our model is making.

• Epoch: An epoch represents one round of training for our model. In each epoch, the model learns from its
mistakes and gets better.

• Training data is randomly shuffled and divided into mini-batches for computational speed-up.

• Mini-batches are used to compute each step, reaching a local minimum of the cost function.

• Types of gradient descent: stochastic gradient descent (SGD), Adam, RMSprop.

Reducing loss: Gradient Descent

[wolframalpha.com]

Loss
(1-x)2

Current
situation

Desired
situation

Convex
curve

Reducing loss: Gradient Descent
Situation: blindfolded, standing in a hilly area
Goal: Reaching the lowest point

I have a guide who will help me find the
way.

Clueless!

1) Slope =Loss function
2) Guide= Optimizer algorithm – velocity + direction (Momentum)

3) Learning Rate: How big my steps
should be. “controls how fast or slow I
progress”
• Small steps = move slowly and reach

the lowest point accurately
• Larger steps= I might overshoot and

miss the minimum.

4) Epoch: How many times do I want
to follow my guide?
Each time = one epoch.
More epochs = higher chances to get
closer to the lowest point.

5) Minima: Lowest point

Adapted from https://developers.google.com/

Reducing loss: Gradient Descent

• Optimizers
• Minima, gradient,
• learning rate –high or low
• Epochs
• Momentum

• Linear classifiers
• Perceptron /SVM

• Working of perceptron & NN
• Forward propagation
• Backward propagation,
• Activation function
• Loss function

•Linear classifiers like perceptron and SVM are foundational algorithms in machine learning.

•Neural networks, comprised of multiple perceptrons, utilize forward and backward propagation

to make predictions.

•Forward propagation involves input data, weights, bias, activation functions, and output

prediction.

•Backward propagation adjusts weights based on error gradients to improve model

performance.

•Gradient descent optimizes weights and biases to minimize the loss function and improve

model accuracy

Summarize

Thankyou

