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Data & Machine Learning
Data

 Generated at an unprecedented rate - technological 

advancements & and increasing digitalization

 Enormity and complexity- surpass the human ability to 

decipher hidden relevance/significance

www.cloudduggu.com

Machine learning (ML)

 To build models/machines that can learn from data and 

make predictions.

 Designed to analyze large and complex datasets, discover 

patterns, make predictions, and automate decision-

making, - extremely challenging to do at scale.



Decision boundaries
• Ability to create imaginary lines called “Decision Boundaries”

• Primary Goal: to differentiate or classify data into distinct categories

• Classifiers (algorithms): linear classifiers non-linear classifiers

(vitalflux.com)



Nonlinear ClassifierLinear ClassifierCharacteristic
Nonlinear (e.g., curves, circles, complex 
shapes)Linear (e.g., straight line, hyperplane)Decision Boundary

Decision Trees, Random Forest, Kernel 
SVM, Neural Networks

Logistic Regression, Linear SVM, 
PerceptronCommon Models

Suitable when data exhibits complex or 
nonlinear patterns

Suitable when data has approximately 
linear relationshipsUse Cases

Image recognition, speech recognition, 
natural language processing, complex 
pattern recognition

Basic image classification, spam email 
detection, sentiment analysisExamples of Use

May be less interpretable due to 
complexity

Often more interpretable due to 
simplicityInterpretability

Higher computational demands, especially 
for deep neural networksLower computational demandsComputational Demands

Classifiers



Linear Classifiers (LC)

• Family of algorithms that learn to separate data into distinct classes
• Predictions - a linear combination of input features
• Define a decision boundary can be visualized by plotting the data in N dimensions
• Some popular linear classifiers include SVM, logistic regression, and perceptron

“Foundation of many ML models essential for building intelligent systems”

A line in 2D A plane in 3D A hyperplane in higher dimensions

“ Key idea is to find a linear decision boundary that separates different classes”



LC: Perceptron
• Perceptron mimics the way the human brain learns

• Developed in the 1950s to simulate the process of neural learning

• It was the first algorithm capable of learning from data and making predictions

• It provides a simple but powerful model for classification tasks

Neuron - a building block of the brain Perceptron forms a basic unit of NN



LC: Perceptron
The perceptron consists of 4 parts:

1) Input values/one input layer   2)Weights and Bias

3)Net sum     4) Activation Function.

• Takes inputs, multiplies them by weights, adds a bias,

sums them up, and then passes the result through an 

activation function =Output is binary (0 or 1).

• Weights: control the contribution of individual features to the decision boundary. 

• Bias: shifts the decision boundary, allowing for more flexibility in classification. Both must be carefully tuned 

for best results.

[wolframalpha.com]
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• SVM: Powerful linear classification algorithm 

• Aims: To find a hyperplane that maximizes the margin between different classes

• Kernel function to project the data into a higher-dimensional space where the problem of finding a 

linear discriminant becomes easier

• Effective for binary and multiclass classification tasks 

LC: Support Vector Machines (SVM)



Next hands-on: Building a linear classifier 
using perceptron and SVM



Neural Network

inputinput Final 
Output 
Layer

• Many perceptrons combine together = NN.

• NN works the same way as the perceptron.



Forward Propagation
Essential concepts in the context of working of perceptron:

1.Forward Propagation:

“ During training: how data is fed forward through the network”

• What it is: process of giving input data, multiplying it by 

weights, adding bias, summing up, applying activation functions, 

and getting final prediction/output.

• Weights: control the features contribution to decision boundary. 

• Bias: shifts the decision boundary allowing flexibility. 

• Activation Function: “Heart”
www.datacamp.com



Activation Function
• An activation function - binary switch for a perceptron -

"on" or "off" based on its input. 

• This function introduces non-linearity enabling NN to 

capture complex patterns - like image recognition and 

natural language processing. 

• Types of activation function:

“Deciding authority”



Understanding Loss Function
“Measures how bad our model is at its job”

• After Forward Propagation:
1)Predicted Output = Actual Output,      2) Predicted Output ≠ Actual Output 

• Loss functions = difference between predicted and actual values. Higher value = bad model, lower value = good model

• Common loss functions include mean squared error, cross-entropy, and hinge.

Loss Function Output Type Problem Type

Mean Squared Error Continuous Regression

Cross-Entropy Binary or Multiclass Classification

Hinge Binary or Multiclass Classification
www.datacamp.com

Truck

Goal

To minimize the loss 

function so that the 

model fits the data 

as best as possible

“drives next part”



Backward Propagation
2. Backward Propagation (Backpropagation):

“Responsible for learning from the mistakes (errors) made during 
FP by adjusting the network's weights to minimize those errors”

What it is: Process involves calculating LF gradients (derivatives)/ 
how each weight in the network contributed to this error. 

Steps: 

• Gradient Calculation: Computes gradients of the loss w.r.t.

model parameters (weights and biases), indicating how to 

adjust them.

• Backward Pass: Passing gradients backward.

• Weight Update: Optimizes weights and biases with an 

algorithm like gradient descent to reduce the loss.

• Iteration: Steps repeated over the training data until the 

network minimizes its loss, improving its performance.



• Step-by-step process by optimization algorithms (gradient descent) - teach the model - minimize the loss.

• Making small adjustments in weights and biases - reduce the mistakes our model is making.

• Epoch: An epoch represents one round of training for our model. In each epoch, the model learns from its 
mistakes and gets better. 

• Training data is randomly shuffled and divided into mini-batches for computational speed-up.

• Mini-batches are used to compute each step, reaching a local minimum of the cost function.

• Types of gradient descent: stochastic gradient descent (SGD), Adam, RMSprop.

Reducing loss: Gradient Descent

[wolframalpha.com]

Loss
(1-x)2

Current 
situation

Desired 
situation

Convex 
curve



Reducing loss: Gradient Descent
Situation: blindfolded, standing in a hilly area 
Goal: Reaching the lowest point

I  have a guide who will help me find the 
way. 

Clueless!

1) Slope =Loss function
2) Guide= Optimizer algorithm – velocity + direction (Momentum)

3) Learning Rate: How big my steps 
should be. “controls how fast or slow I 
progress”
• Small steps = move slowly and reach 

the lowest point accurately
• Larger steps= I might overshoot and 

miss the minimum. 

4) Epoch: How many times do I want 
to follow my guide?
Each time = one epoch. 
More epochs = higher chances to get 
closer to the lowest point.

5) Minima: Lowest point



Adapted from https://developers.google.com/

Reducing loss: Gradient Descent

• Optimizers 
• Minima, gradient, 
• learning rate –high or low
• Epochs
• Momentum

• Linear classifiers
• Perceptron /SVM

• Working of perceptron & NN
• Forward propagation 
• Backward propagation, 
• Activation function
• Loss function



•Linear classifiers like perceptron and SVM are foundational algorithms in machine learning.

•Neural networks, comprised of multiple perceptrons, utilize forward and backward propagation 

to make predictions.

•Forward propagation involves input data, weights, bias, activation functions, and output 

prediction.

•Backward propagation adjusts weights based on error gradients to improve model 

performance.

•Gradient descent optimizes weights and biases to minimize the loss function and improve 

model accuracy

Summarize
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