Tutorial for the R package - "maGUI"

The "maGUI" package aims to provide the user with graphical user interface for analysing microarray data produced on various platforms such as Affymetrix, Agilent, Illumina, Nimblegen and so on. It allows the user to preprocess and analyze the microarray data automatically. It also allows the user to identify functional categories and pathways for differentially expressed genes. Further, the user can build a co-expression network of differentially expressed genes.

The present tutorial describes the version 2.1 of the maGUI package. It relies on gWidgets (John Verzani et al. (2014)) package for generating GUIs. In order to generate and export different types of plots, it uses functions from graphics (Becker et al. (1988)) package and grDevices respectively. For smooth processing during export and import of graphs and tables, tcltk interface is utilized. Further, it uses various packages during the analysis viz., RSQLite, GEOquery, GEOmetadb, RBGL, WGCNA, Rgraphviz, simpleaffy, beadarray, lumi, oligo, pdInfoBuilder, Gostats, globaltest, ssize, etc.

In order to install the he maGUI package, use the following command on the R console.

```
> install.packages("maGUI",dependencies=TRUE)
```

With this command, all the required functions and dependencies of the maGUI package will also get installed automatically. In order to use the package, the installed packages are loaded as usual with library or require functions

> library(maGUI)

Load the maGUI GUI using the function below

```
> maGUI:::maGUI()
```

Microarray data can be imported from File \rightarrow Load. Files with CEL extensions will be used to load Affymetrix data. Raw files with foreground mean signal and background median signal values will be used Agilent-one color data while loading of Agilent-two color data require raw files with Agilent source. Nimblegen requires raw files with .xys or .pair extensions while non-normalized files are used to load both Illumina beadarray and lumi data. Series matrix file along-with platform file is required to load Series Matrix data. GSE number is required to load On-line data. Once the data is loaded successfully, it prompts for automated analysis of microarray data. Selecting "OK" results in normalization, QC check, filtering with 2 fold over-expression in at least 50 percent of the arrays or filtering with standard deviation of at least 2, differential gene expression, PCA, clustering of samples and classification of loaded microarray data.

File Preprocessing Analysis Miscellaneous View	GUI for MA Analysis Export Help	- + X
name value		
name value Affymetrix	Confirm × Oo you want to pre-process and analyze automatically Cancel OK	
Please wait while loading		

Figure 1. Initiation of GUI for automatic analysis of loaded Affymetrix data.

The loaded microarray data can be normalized from Preprocessing \rightarrow Normalization. Quality assessment of the normalized data can be made from Preprocessing \rightarrow Quality_Control through qc plot, boxplot or scatterplot. The following figure is a qc plot of normalized microarray data for the experiment number GSE68613.

Figure 2. QC plot of loaded Affymetrix data.

Normalized data can be used to plot principle component analysis (PCA) with singular value decomposition method from Analysis \rightarrow Principal Component Analysis Unsupervized. Samples in microarray experiment can also be clustered using normalized data with pearson correlation coefficient and complete linkage methods from Analysis \rightarrow Clustering and Visualization Unsupervized. The following figures represent PCA and clustering of samples in the microarray experiment.

Figure 3. PCA

Figure 4. Clustering of Samples

Normalized microarray data can be filtered to exclude uninteresting genes or genes with very low expression levels from Analysis \rightarrow Filtering_and_Statistical_Analysis \rightarrow UnSpecific. Genes can also be filtered out using group knowledge from Analysis \rightarrow Filtering_and_Statistical_Analysis \rightarrow Specific. User can specify the names of control samples and test samples. The user can also add extra group of control and test samples using "Add" button as shown below.

Add	elect sample	cance	- +
Controls		Те	ests
GSM1677117.CEL,GSM	11677118.	GSM1677119	.CEL,GSM1677120
SMID//II/.CEL,GSM	10//118.	G2M10//119	.CEL, GSM10//120

Figure 5. Providing Control and Test sample names of two different groups.

Using specific or unspecific filtering data, top differentially expressed genes can be obtained from Analysis \rightarrow Differential_Gene_Expressions.

ames			
ames			
ames			
ames			
8]	
0]	
1	•		
BH	•		
p	•		
	0 1 BH p	8 0 1 • BH • p •	8 0 1 • BH • Cance

Figure 6. Parameters for Differentially Expressed Genes

GUI for MA Analysis - + ×							
File Preprocessing Analysis Miscellaneous View	w E	xport Help					
name value		Identifier	logFC	t	P.Value	adj.P.Val	В
✓ Affymetrix		1427183_at	4.580597	30.87824	2.226026e-07	0.005214543	6.817111
Normalization		1444061_at	6.402729	29.96598	2.623112e-07	0.005214543	6.739225
QC_Plot		1419152_at	4.289146	28.47417	3.468577e-07	0.005214543	6.600229
Filtered		1435261_at	4.285845	26.46323	5.17664e-07	0.005337892	6.38669
Stat_Significant		1448756_at	-4.144604	-25.03651	7.006827e-07	0.005337892	6.213918
▶ DGE		1434136_at	3.277126	24.90083	7.21783e-07	0.005337892	6.196458
PCA_Plot		1438855_x_at	-4.547299	-23.6256	9.616247e-07	0.005337892	6.022775
Cluster_Plot		1419593_at	-3.057502	-22.71281	1.192123e-06	0.005337892	5.886955
 Classification 							
Done							

Figure 7. Table of DEGs predicted from Affymetrix data.

Classification of differentially expressed genes can be performed from Analysis \rightarrow Classification_and_Visualization_Supervized.

Figure 8. Classification able of DEGs.

It can be visualized as heatmap of expression profiles of differentially expressed genes where red color represents upregulation and green color represents downregulation.

Gene set enrichment analysis (GSEA) can be performed on statistically significant genes of microarray data from Miscellaneous menu. User can select GO categories such as Biological Process from Miscellaneous \rightarrow Gene Set Enrichment Analysis \rightarrow GO Biological Process, Molecular Function from Miscellaneous Gene Set Enrichment Analysis \rightarrow GO Molecular Function and Cellular Component from Miscellaneous \rightarrow Gene Set Enrichment Analysis \rightarrow GO Cellular Component and set the pvalue to get the corresponding GO terms for statistically significant genes. Alternatively, user can opt for KEGG pathways to get enrichment of the significant genes in some pathways from Miscellaneous Gene Set Enrichment Analysis \rightarrow KEGG Pathways. GSEA is achieved with hyperGTest function from GOstats package. Results are viewed and saved as tables. The following figure represents GO terms of GSEA Biological Process with p-value less than 0.001.

Ψ	GUI for MA Analysis - + ×									
File Preprocessing Ana	lysis Miscellaneous	View	Export Help							
name	value	▼	Identifier	GOBPID	Pvalue	OddsRatio	ExpCount	Count	Size	Term
▼ Affymetrix			GO:0050678	GO:0050678	7.130272e-05	2.098626	21.35494	40	215	regulation of
Normalization			GO:0001763	GO:0001763	7.327986e-05	2.118361	20.65967	39	208	morphogenes
QC_Plot			GO:0071495	GO:0071495	7.591478e-05	1.653789	52.34444	80	527	cellular respo
Filtered			GO:0019220	GO:0019220	7.594762e-05	1.437664	112.2376	151	1130	regulation of
Stat_Significant			GO:0051130	GO:0051130	7.639052e-05	1.6273	56.41678	85	568	positive regul
DGE			GO:0016310	GO:0016310	7.64841e-05	1.394107	138.5588	181	1395	phosphorylat
PCA_Plot			GO:0009790	GO:0009790	7.992612e-05	1.478858	93.3658	129	940	embryo deve
Cluster_Plot			GO:0048701	GO:0048701	8.047098e-05	4.392086	3.973013	13	40	embryonic cr
 Classification 			GO:0061061	GO:0061061	8.52338e-05	1.688742	46.88155	73	472	muscle struct
▼ GSEA_GO		_	GO:0009719	GO:0009719	8.552543e-05	1.537904	73.99736	106	745	response to e
▶ BP			GO:0031327	GO:0031327	8.561187e-05	1.467361	96.94151	133	976	negative regu
	10		GO:0010740	GO:0010740	8.599654e-05	1.715655	43.70314	69	440	positive regul
			GO:0030155	GO:0030155	9.270056e-05	1.957139	26.02323	46	262	regulation of
			GO:0042692	GO:0042692	9.511914e-05	1.834112	32.87668	55	331	muscle cell d
			GO:0090068	GO:0090068	9.658788e-05	2.441962	13.21027	28	133	positive regul
			GO:0009890	GO:0009890	9.686236e-05	1.458349	98.92801	135	996	negative regu
			GO:2000736	GO:2000736	9.934454e-05	3.224091	6.853447	18	69	regulation of
			GO:0051336	GO:0051336	0.0001004684	1.553961	68.43514	99	689	regulation of
Diag	co wait while CO term	0.5								

Figure 9. GSEA GO terms of Biological Process

Similar tables can be generated for Molecular Function and Cellular Component categories of GSEA. The following figure represents KEGG pathways with p-value less than 0.001.

-			6	III for MA	Analysis					×
File Preprocessing Analy	vsis Miscellaneous	View	Export Help		Andrysis					^
name	value	VICW	Identifier	KEGGID	Pvalue	OddsRatio	ExpCount	Count	Size	Term
 Affymetrix 	1	_	05146	05146	5.906964e-05	2.688423	11.72025	26	107	Amoebiasis
Normalization			04360	04360	0.0001028283	2.432258	14.13002	29	129	Axon guidance
QC_Plot			04310	04310	0.0004236192	2.165334	15.99212	30	146	Wnt signaling path
Filtered			04512	04512	0.000468265	2.639777	9.091411	20	83	ECM-receptor inter
Stat_Significant										
▶ DGE										
PCA_Plot										
Cluster_Plot										
Classification										
GSEA_GO										
 Graph_GSEA_GO 										
▶ BP										
▶ GSEA_KEGG										
3										
Dana										
Done										

Figure 10. GSEA KEGG Pathways

Gene set test analysis (GSTA) is used to assign GO terms and KEGG pathways for all genes in the normalized data based on control and test samples groups. The following figure represents control and test sample names in the microarray experiment for GSTA. It is performed for Biological Process from Miscellaneous Gene Set Test Analysis \rightarrow \rightarrow GO Biological Process, for Molecular Function from Miscellaneous \rightarrow Gene Set Test Analysis GO Molecular Function and for Cellular \rightarrow from Miscellaneous Gene Set Test Analysis Component \rightarrow \rightarrow GO Cellular Component. Alternatively, user can opt for KEGG pathways from Miscellaneous \rightarrow Gene Set Test Analysis \rightarrow KEGG Pathways.

 Select sample 	names – + ×
Controls	Tests
GSM1677117.CEL,GSM167711	GSM1677119.CEL,GSM167712
	Cancel OK

Figure 11. Control and Test sample names for GSTA

Enrichment of genes for GO terms can be visualized as graphs from Miscellaneous \rightarrow Graphs \rightarrow GSEA GO Biological Process for Biological Process, from Miscellaneous \rightarrow Graphs \rightarrow GSEA GO Molecular Function for **Miscellaneous** Molecular Function and from \rightarrow Graphs \rightarrow GSEA GO Cellular Component for Cellular Component. User can set the cut off p-value to get the desired GO terms. The following figures are the graphs for GSEA GO terms and KEGG pathways and their legends with p-value less than 0.001. Yellow colored nodes represent the most significant ones while the white nodes are their parents.

Figure 12. Graph of GSEA GO Biological Process

T.	Graph_Legend - + ×
Identifier	BP
GO:0002279	mast cell activation involved in immune response
GO:0042063	gliogenesis
GO:0048598	embryonic morphogenesis
GO:0045927	positive regulation of growth
GO:0086023	adrenergic receptor signaling pathway involved in heart process
GO:0086103	G-protein coupled receptor signaling pathway involved in heart process
GO:0043549	regulation of kinase activity
GO:0002448	mast cell mediated immunity
GO:0043303	mast cell degranulation
GO:0065009	regulation of molecular function
GO:0045859	regulation of protein kinase activity
GO:0070365	hepatocyte differentiation
GO:0048193	Golgi vesicle transport
GO:0072507	divalent inorganic cation homeostasis
GO:0050773	regulation of dendrite development

Figure 13. Legend for Graph of GSEA GO Biological Process

Figure 14. Graph of GSEA GO Molecular Function

Figure 15. Legend for Graph of GSEA GO Molecular Function

Figure 16. Graph of GSEA GO Cellular Component

*	Graph_Legend – +	×
Identifier	CC N	n
GO:0005576	extracellular region	
GO:0044421	extracellular region part	
GO:0071944	cell periphery	U
GO:0031012	extracellular matrix	
GO:0005886	plasma membrane	
GO:0005578	proteinaceous extracellular matrix	
GO:0005615	extracellular space	
GO:0016020	membrane	
GO:0044459	plasma membrane part	
GO:0005856	cytoskeleton	
GO:0044420	extracellular matrix part	
GO:0005874	microtubule	
GO:0005623	cell	
GO:0044464	cell part	
GO:0000796	condensin complex	

Figure 17. Legend for Graph of GSEA GO Cellular Component Similar graphs can be generated for GSTA GO terms of Biological Process from Miscellaneous \rightarrow Graphs \rightarrow GSTA_GO_Biological_Process, Molecular Function from Miscellaneous \rightarrow Graphs \rightarrow GSTA_GO_Molecular_Function and Cellular Component from Miscellaneous \rightarrow Graphs \rightarrow GSTA_GO_Cellular_Component.

Visualization of KEGG Pathways

Visualization of KEGG pathways for significant genes can be achieved from Miscellaneous \rightarrow Graphs \rightarrow GSEA_KEGG_Pathways setting the p-value and selecting the KEGG ID. Nodes in the pathway of KEGG ID are mapped to differentially expressed genes color coding of which is in the range of Red and Green based on log fold change value. Red colored nodes in the graph are upregulated genes, while Green colored nodes represent downregulated genes. Dark grey colored nodes in the graph are the genes that are not differentially expressed while the white nodes represent genes absent in the microarray data. The following figures represent pathway of KEGG ID "04360" of GSEA with p-value less than 0.001 and its legend.

Figure 18. Graph of KEGG Pathway of ID "04310" of GSEA. Nodes mmu:13176 and mmu:19055 are downregulated.

T		Graph_Legend - +	×
Node	Node Color	logFC	n
mmu:93737	white	0	U
mmu:93742	white	0	
mmu:14677	darkgrey	0	
mmu:14678	darkgrey	0	
mmu:14679	darkgrey	0	
mmu:12767	darkgrey	0	
mmu:26413	white	0	
mmu:26417	white	0	
mmu:170758	white	0	
mmu:19353	darkgrey	0	
mmu:19354	darkgrey	0	
mmu:13176	#877800	-1.54499219505475	
mmu:18019	darkgrey	0	
mmu:18021	darkgrey	0	
mmu:73181	white	0	
mmu:19055	#4BB300	-3.12564068130478	

Figure 19. Legend for Graph of GSEA KEGG Pathway of ID "04360". Node mmu:13176 is downregulated with log fold change of 1.5 while node mmu:19055 is downregulated with log fold change of 3.1

Similar graphs of KEGG pathways can be generated for GSTA genes. This is achieved from Miscellaneous \rightarrow Graphs \rightarrow GSTA_KEGG_Pathways setting the p-value and selecting the KEGG ID.

Figure 20. Graph of KEGG Pathway of ID "00350" of GSTA. Node mmu:11522 in the graph is upregulated

•		Grap	_Legend	- +	×
Node	Node Color	logFC			
mmu:11761	darkgrey	0			
mmu:213043	white	0			
mmu:71724	white	0			
mmu:71872	white	0			
mmu:14085	darkgrey	0			
mmu:13190	darkgrey	0			
mmu:12846	darkgrey	0			
mmu:11522	#FF0000	4.2858	34455866481		
mmu:11529	darkgrey	0	N		0
mmu:11532	darkgrey	0	M2		
mmu:26876	white	0			
mmu:18948	darkgrey	0			
mmu:13166	darkgrey	0			
mmu:21823	white	0			
mmu:22178	white	0			U

Figure 21. Legend for Graph of GSEA KEGG Pathway of ID "00350". Node mmu:11522 is upregulated with log fold change of 4.28 The nodes in the pathway of KEGG ID are mapped to differentially expressed genes color coding of which is in the range of Red and Green based on log fold change value. Red colored nodes are upregulated genes, Green colored nodes are downregulated genes, Dark grey colored nodes are the genes that are not differentially expressed while the white nodes are the genes absent in the microarray data as shown below for . The following figures represent pathway of KEGG ID "00350" of GSTA with p-value less than 0.001 and its legend.

All the identifiers in a microarray experiment can be mapped to corresponding gene symbol from Miscellaneous \rightarrow Identifier_Symbol. It requires annotation package from Bioconductor resource. GUI uses the inbuilt table to map the microarray experiment to its corresponding annotation database available at Bioconductor, nonetheless user can also provide updated GEOmetadb database.

Ψ		GUI for MA	Analysis	- + ×
File Preprocessing Ar	alysis Miscellaneous Vie	w Export Help		
name	value	Identifier	Symbol	0
▼ Affymetrix		1415670_at	Copg1	0
Normalization		1415671_at	Atp6v0d1	
QC_Plot		1415672_at	Golga7	
Filtered		1415673_at	Psph	
Stat_Significant		1415674_a_at	Trappc4	
▶ DGE		1415675_at	Dpm2	
PCA_Plot		1415676_a_at	Psmb5	
Cluster_Plot		1415677_at	Dhrs1	
Classification		1415678_at	Ppm1a	
GSEA_GO		1415679_at	Psenen	
Graph_GSEA_GO		1415680_at	Anapcl	
GSEA_KEGG		1415681_at	Mrpl43	
Graph_GSEA_KEC	GG	1415682_at	Xpo7	
GSTA_KEGG		1415683_at	Nmt1	
GSTA_GO		1415684_at	Atg5	
Graph_GSTA_KEG	G	1415685_at	Mtif2	
Graph_GSTA_GO		1415686_at	Rab14	
Identifier_Symbo	1	1415687_a_at	Psap	
Coexpression_Net	twork	1/15688 at	Uba2a1	
SSE_Plot				
Done				

Figure 22. Identifiers of Affymetrix microarray data mapped to gene symbols.

Sample size estimation for microarray experiment can be achieved from Miscellanoues \rightarrow Sample_Size_Estimation.

Sample size to detect 2-fold change

Figure 23. Graph of Sample size estimation

Co-expression network can be built for differentially expressed genes from Miscellaneous \rightarrow Coexpression_Network. When the expression correlation between genes is 70 percent and above, it forms a link between the genes. A co-expression network is built using such links.

Figure 24. Co-expression Network of Differentially Expressed Genes

Protein-protein associations can be identified from Miscellanoues \rightarrow PPIs_Prediction. It uses correlation of co-expression profiles among the genes of two different normalized data. When the correlation is 80 percent and above, two genes are considered to be associated.

Tasks performed on microarray data can be viewed from workspace of hierarchical nature in the left hand side of the GUI. Content can be viewed in the graphical area by double clicking any task in the workspace or selecting any task from View menu. The following figure represents all the tasks performed on Affymetrix microarray data. Similar tasks can be performed on microarray data of different experimental platforms such as Agilent of One and Two color types, Illumina of Beadarray and Lumi types and Nimblegen. Series matrix file along with platform soft file can also be used. Further Online procedure is also available.

▼ GUI for MA Analysis						- + ×
File Preprocessing Analysis	Miscellaneous	View	Export Help			
name	value	▼	Identifier	holm	alias	p-value
▼ Affymetrix			00350	0.0002297827	Tyrosine metabolism	1.021256e-06
Normalization			04114	0.002377562	Oocyte meiosis	1.061412e-05
QC_Plot			04070	0.003583945	Phosphatidylinositol signaling system	1.60715e-05
Filtered			00480	0.005615757	Glutathione metabolism	2.52962e-05
Stat_Significant			04310	0.008241992	Wnt signaling pathway	3.729408e-05
▶ DGE			04810	0.009728795	Regulation of actin cytoskeleton	4.422179e-05
PCA_Plot			04916	0.009985183	Melanogenesis	4.559444e-05
Cluster_Plot			04210	0.01173789	Apoptosis	5.384355e-05
Classification			04142	0.01179465	Lysosome	5.435321e-05
▶ GSEA_GO			04141	0.01187286	Protein processing in endoplasmic reticulum	5.496697e-05
Graph_GSEA_GO			05416	0.02161708	Viral myocarditis	0.0001005445
GSEA_KEGG			04920	0.02172661	Adipocytokine signaling pathway	0.0001015262
Graph_GSEA_KEGG			05211	0.02349614	Renal cell carcinoma	0.0001103105
► GSTA_KEGG			04510	0.02419444	Focal adhesion	0.0001141247
▶ GSTA_GO			05323	0.02578936	Rheumatoid arthritis	0.0001222244
Graph_GSTA_KEGG			04350	0.03021257	TGF-beta signaling pathway	0.0001438694
Graph_GSTA_GO			04260	0.0306641	Cardiac muscle contraction	0.0001467182
Identifier_Symbol			05146	0.03306079	Amoebiasis	0.0001589461
Coexpression_Network						
SSE_Plot						
Done				3		

Figure 25. Tasks performed on Affymetrix microarray data

All the tables and figures generated during microarray data analysis and annotation can be exported from Export menu. User can save images directly from the graphical region with mouse Right click. User can also search any identifier in the tables by pressing Ctrl + F in the graphical region. "Is" function can be used to identify the objects created at R terminal in background. These objects can be utilized for any sort of analysis at R terminal. Further, they can be saved as Rdata file from File \rightarrow Save. The Rdata file can be loaded at any R terminal with load function.