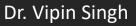
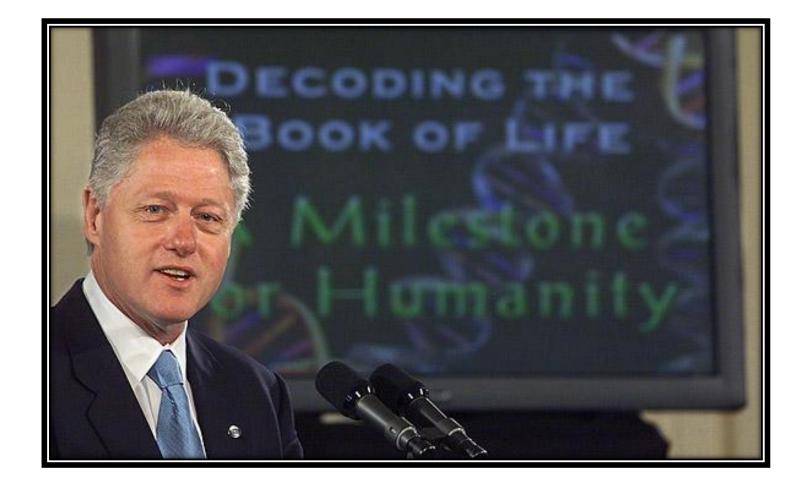
Next Generation Sequencing Techniques and Applications

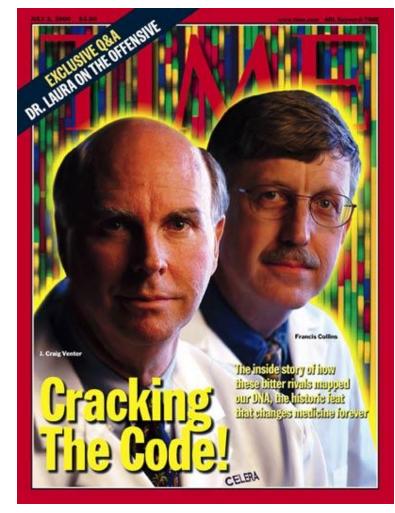
Webinar – ICGEB, Delhi, 24.07.2020


Dr. Vipin Singh

Post Doctoral Fellow

Institute of Biology, Ecole Normal Superior (IBENS), Paris


Associate Professor, University Institute of Biotechnology,


Chandigarh University

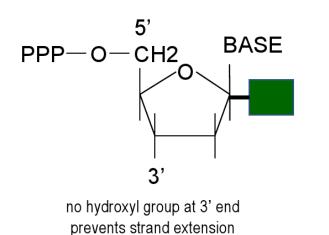
Cracking the Code

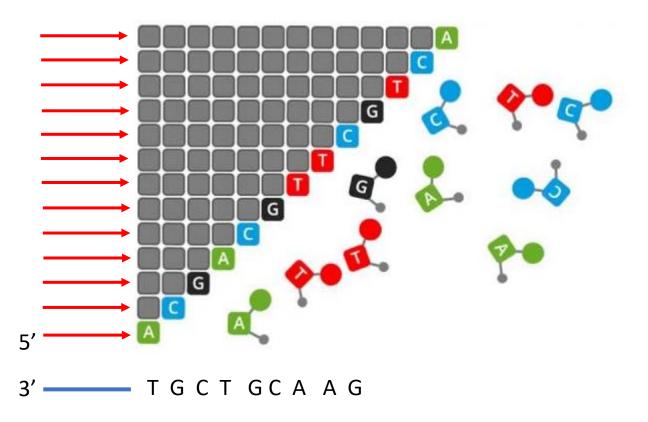
February 2001

Sequencing Techniques

Polymerase based – Most sequencing techniques

Ligase based - SOLiD


Helicase based - Nanopore



Sanger Sequencing - Dideoxy nucleotide

Differential flourochrome labeling of ddNTPs in automated Sanger sequencing

Automated Sanger Sequencer

Major Achievements

1995 – Haemophylus influenzae

1996 – Yeast

2000 – Drosophila, Arabidopsis

2001 – Human genome

The evolution of Sequencing technologies

Classical or first generation (1976 – 2002) -Maxam Gilbert, Sanger Coulson

> Second Generation –(2002 – till date) -Pyrosequencing, Virtual terminator sequencing, SoLid

> > Third Generation – 2008 – evolving – Nanopore, Ion torrent, SMRT

Rapidly evolution and fine tuning and extinction

Name	Company	PCR	Sequencing	Read- length
454	Roche	Emulsion	Polymerase- Pyrosequencing	250
Solexa	Illumina	Bridge	Polymerase- reversible terminators	36
SOLiD	Applied Biosystems	Emulsion	Ligase (octamers with 2 base encoding)	35

2009

High-end sequencing - P latform†	Sequencing chemistry	Read lengths/ through put	Run time	Template prep	Application
Roche 454 -Titanium FLX	Pyrosequencing	400 bp 400 Mb/run	10 hours	Emulsion PCR	Denovo WGS of microbes, pathogen discovery, Exome seq
Illumina/Solexa -HiSeq 2000	Reversible terminator chemistry	2×100bp 600 GB/ run (dual cell)	11.5 days	Solid-phase	Human WGS, exome seq, RNA-seq, Methylation
ABI/LifeTechnology-SOLiD 5550×L	Sequencing by ligation	2×60bp 15 GB/day	8 days	Emulsion PCR	Human WGS, exome seq, RNA-seq, Methylation

454 and SOLiD have been phased out

Contemporary Sequencing technologies

Short Read Sequencers

 Virtual Terminator Sequencing (Illumina)


• Ion Torrent (Roche)

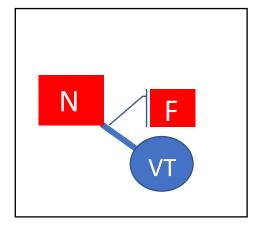
Long Read Sequencers

- Nanopore (Oxford)
- SMRT (Pac Bio)

Virtual Terminator sequencing – Illumina, Solexa

Virtual terminator sequencing

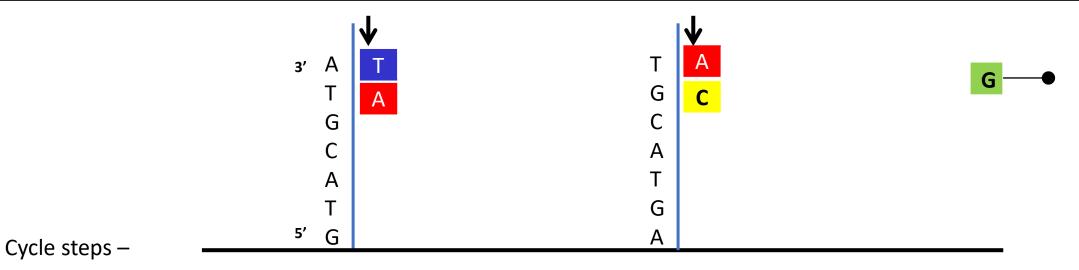
$(DNA)n + ddNTP \xrightarrow{DNA}_{Polymerase} > (DNA)n+1 + Ppi + H^+$

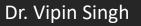

The virtual terminator (VT) nucleotides are nucleotide analogues, contain a fluorescent dye and chemically cleavable group (VT) – 3'-O-azidomethyl group.

Once incorporated, the VT analogues block further incorporation untill the VT moiety is chemically removed

Hence the name – "Virtual/ Reversible terminators".

The virtual terminator label is removed before the next cycle , regenerating the 3'

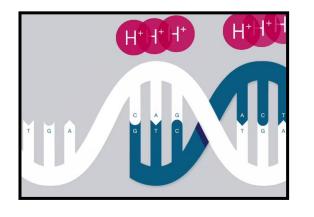

OH group using reducing agent tris 2 carboxy ethyl phosphine (TCEP)



Virtual terminator Sequencing

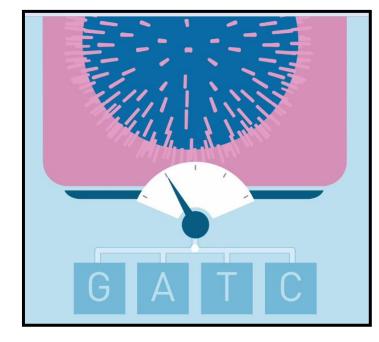
- Primer is extended through virtual terminator nucleotides by adding all four differentially labelled nucleotides simultaneously
- 2. Because of the VT moitey only one nucleotide is added at a time and recorded for each sequence based on differential florescence tagging
- 3. Next the virtual terminator moitey is removed, regenerating the 3' OH group using reducing agent tris 2 carboxy ethyl phosphine (TCEP)

Steps one to three are repeated till the template is fully sequenced



lon torrent

Ion torrent


The flow cell is flushed with a **single species of nucleotide at a time**

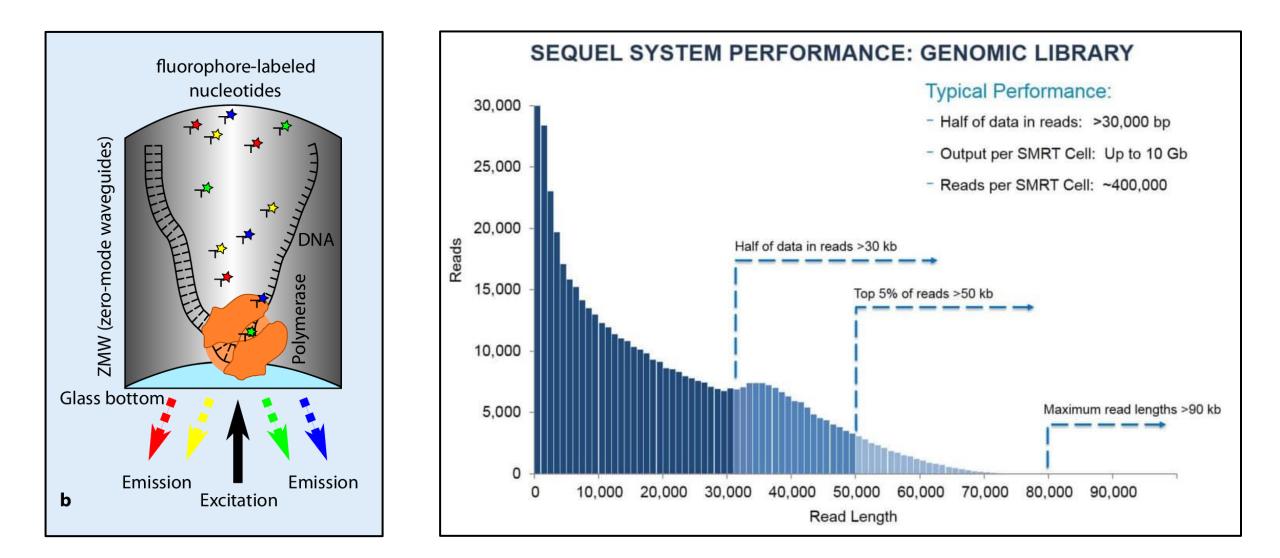
The semi-conductor chip records **changes in pH**, upon incorporation of complimentary nucleotide by polymerase

The change in pH is proportional to the number of nucleotides added

Current read length 100 bp

No imaging

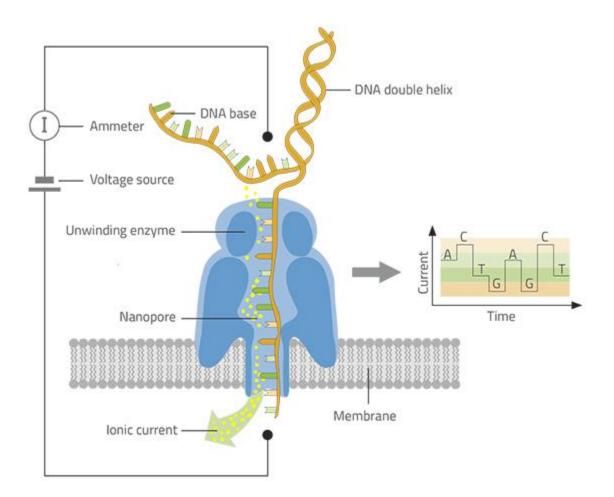
Long read sequencers


Long Read Sequencers

• SMRT(Pac Bio)

Nanopore (Oxford)

SMRT – Single Molecule Real Time Sequencing -PacBio



Nanopore – Helicase based sequencing

Oxford Nanopore

Marketed by Oxford Nanopore

Time to sequence human genome – 15 to 20 minutes

Size of sequencer – pen drive, scalable

Cost of sequencing while human genome - < 1000\$

The long and short of sequencing

Table 1 Data type, length, accuracy, throughput and cost across long-read and short-read technologies and platforms									
Sequencing technology	Platform	Data type	Read length (kb)		Read accuracy	Throughput per flow cell (Gb)		Estimated cost per	Maximum throughput per
			N50	Maximum	(%)	Mean	Maximum	Gb (US\$)	year (Gb)ª
Pacific Biosciences (PacBio)	RS II ^ь	CLR	5–15	>60	87–92	0.75-1.5	2	333–933°	4,380
	Sequel	CLR	25–50	>100		5–10	20	98-195 ^d	17,520
	Sequel II	CLR	30–60	>200		50-100	160	13-26 ^e	93,440
		HiFi	10–20	>20	>99	15-30	35	43-86 ^e	10,220
Oxford Nanopore Technologies (ONT)	MinION/ GridION	Long	10–60	>1,000	87–98	2-20	30	50-500 ^f	21,900 (MinION) 109,500 (GridION)
		Ultra-long	100–200	>1,500		0.5–2	2.5	500–2,000 ^f	913 (MinION) 4,563 (GridION)
	PromethION	Long	10–60	>1,000		50-100	180	21-42 ^f	3,153,600
Illumina	NextSeq 550	Single-end	0.075-0.15	0.15	>99.9	16-30	>30	50-63 ^g	>47,782
		Paired-end	0.075–0.15 (×2)	0.15 (×2)		32-120	>120	40-60 ^g	>70,080
	NovaSeq 6000	Single-end	0.05-0.25	0.25		65-3,000	>3,000	10-35 ^h	>1,194,545
		Paired-end	0.05–0.25 (×2)	0.25 (×2)					

https://www.nature.com/articles/s41576-020-0236-x

The Game changer – ultra long reads

Nanopore sequencing and assembly of a human genome with ultra-long reads

Miten Jain^{1,13}, Sergey Koren^{2,13}, Karen H Miga^{1,13}, Josh Quick^{3,13}, Arthur C Rand^{1,13}, Thomas A Sasani^{4,5,13}, John R Tyson^{6,13}, Andrew D Beggs⁷, Alexander T Dilthey², Ian T Fiddes¹, Sunir Malla⁸, Hannah Marriott⁸, Tom Nieto⁷, Justin O'Grady⁹, Hugh E Olsen¹, Brent S Pedersen^{4,5}, Arang Rhie², Hollian Richardson⁹, Aaron R Quinlan^{4,5,10}, Terrance P Snutch⁶, Louise Tee⁷, Benedict Paten¹, Adam M Phillippy², Jared T Simpson^{11,12}, Nicholas J Loman³ & Matthew Loose⁸

We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ~30x theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. *De novo* assembly of nanopore reads alone yielded a contiguous assembly (NG50 ~3 Mb). We developed a protocol to generate ultra-long reads (N50 > 100 kb, read lengths up to 882 kb). Incorporating an additional 5x coverage of these ultra-long reads more than doubled the assembly contiguity (NG50 ~6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.

Nature Biotechnology - 29 January 2018; doi:10.1038/nbt.4060

REVIEWS

Long-read human genome sequencing and its applications

Glennis A. Logsdon[™], Mitchell R. Vollger[™] and Evan E. Eichler[™]

Abstract | Over the past decade, long-read, single-molecule DNA sequencing technologies have emerged as powerful players in genomics. With the ability to generate reads tens to thousands of kilobases in length with an accuracy approaching that of short-read sequencing technologies, these platforms have proven their ability to resolve some of the most challenging regions of the human genome, detect previously inaccessible structural variants and generate some of the first telomere-to-telomere assemblies of whole chromosomes. Long-read sequencing technologies will soon permit the routine assembly of diploid genomes, which will revolutionize genomics by revealing the full spectrum of human genetic variation, resolving some of the missing heritability

Nature Reviews Genetics

https://www.nature.com/articles/s41576-020-0236-x

NGS Applications

NGS Broad Applications

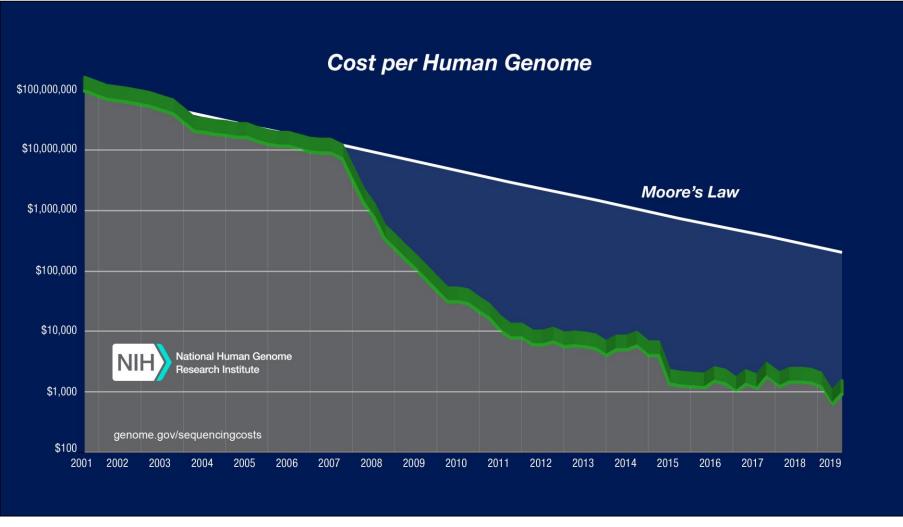
1. Variant calling (SNPs or structural variations)

2. Epigenomics study
Methylation status
of Cytosines in CG,
CHG and CHH
contexts

3. Transcriptome analysis– reconstitution of mRNA,identificationof exonintronboundaries,alternativesplicing,differentialexpressionanalysis

4. Sequence specificbinding of proteins(DNA-Proteininteractions)

DNA-Seq


BS-Seq

RNA-Seq

ChIP-Seq

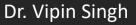
Cost and time efficient

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

High resolution - Mendelian disease genes from exome sequencing

Disorder	Inheritance	Gene identified	Scope	References	
Congenital chloride diarrhea	Recessive	SLC26A3	Exome	Choi <i>et al.</i> [16]	
Miller syndrome	Recessive	DHODH	Exome	Ng et al. [14]	
Charcot-Marie-Tooth neuropathy	Recessive	SH3TC2	Genome	Lupski <i>et al.</i> [20]	
Metachondromatosis	Dominant	PTPN11	Genome	Sobreira <i>et al.</i> [23]	
Schinzel-Giedion syndrome	Dominant	SETBP1	Exome	Hoischen et al. [29]	
Nonsyndromic hearing loss	Recessive	GPSM2	Exome	Walsh <i>et al.</i> [69]	Gilissen et al. Genome
Perrault syndrome	Recessive	HSD17B4	Exome	Pierce et al. [25]	Biology 2011, 12:228
Hyperphosphatasia mental retardation syndrome	Recessive	PIGV	Exome	Krawitz et al. [68]	
Sensenbrenner syndrome	Recessive	WDR35	Exome	Gilissen <i>et al.</i> [26]	
Cerebral cortical malformations	Recessive	WDR62	Exome	Bilguvar <i>et al.</i> [70]	
Kaposi sarcoma	Recessive	STIM1	Exome	Byun <i>et al.</i> [71]	
Spinocerebellar ataxia	Dominant	TGM6	Exome	Wang <i>et al.</i> [72]	
Combined hypolipidemia	Recessive	ANGPTL3	Exome	Musunuru et al. [40]	
Complex I deficiency	Recessive	ACAD9	Exome	Haack <i>et al.</i> [52]	
Autoimmune lymphoproliferative syndrome	Recessive	FADD	Exome	Bolze et al. [73]	

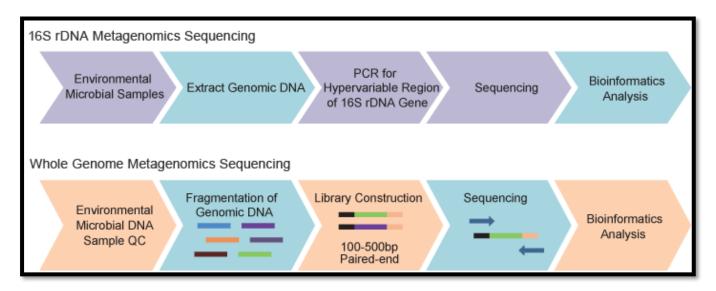
Exome sequencing is revolutionizing Mendelian disease gene identification. This results in **improved clinical diagnosis, more accurate genotype-phenotype correlations and new insights into the role of rare genomic variation in disease**



NGS based diagnostics - Targeted gene sequencing panels

Targeted gene sequencing panels - Focused panels contain a **select set of genes** or gene regions that have known or suspected associations with the disease or phenotype under study. Gene panels can be purchased with preselected content or custom designed to include genomic regions of interest.

Multiple genes can be assessed across many samples in parallel, saving time and reducing costs associated with running multiple separate assays.


Targeted gene sequencing also produces a **smaller, more manageable data set** compared to broader approaches such as whole-genome sequencing, making analysis easier.

Metagenomics

Metagenomics (Environmental Genomics or Community Genomics) is the studyof genomes recovered from environmental samples without the need for culturing them (cultured fraction represents only 1% of biodiversity)

Metagenomics: DNA sequencing of environmental samples •Susannah Green Tringe & Edward M. Rubin Nature Reviews Genetics,6,805–814(2005)

This technology — genomics on a huge scale — enables a survey of the different microorganisms present in a specific environment, such as water or soil, to be carried out.

By integrating the information gleaned with information about biological functions within the community, the structure of microbial communities can potentially be probed.

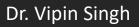
Helps identify massive uncultured microbial diversity present in the environment to provide new molecules for therapeutic and biotechnological applications

Microbiome project

Human microbiome project

Microbiome numbers an order of magnitude higher than total number of human cells

Many microbial interactions endow or enhance human physiology including development, nutrition, immunity and resistance to pathogens


Majority of the human microbiome is largely unknown – 250+ healthy human samples

Earth microbiome project

To systematically approach the problem of characterizing microbial life on earth

Explore microbes in environmental para space

Define microbial community structure and the protein universe

Genome Sequencing Milestones

Genome milestones

1977: Bacteriophage Φ X174 (ref. 72) 1982: Bacteriophage lambda¹³ 1995: Haemophilus influenzae²⁶ 1996: Saccharomyces cerevisiae²⁷ 1998: Caenorhabditis elegans²⁸ 2000: Drosophila melanogaster³² 2000: Arabidopsis thaliana¹⁴⁶ 2001: Homo sapiens²⁹⁻³¹ 2002: Mus musculus¹⁴⁷ 2004: Rattus norvegicus¹⁴⁸ 2005: Pan troglodytes149 2005: Oryza sativa¹⁵⁰ 2007: Cyanidioschyzon merolae¹²⁶ 2009: Zea mays¹⁵¹ 2010: Neanderthal⁸⁸ 2012: Denisovan¹⁴⁵ 2013: The HeLa cell line^{152,153} 2013: Danio rerio154 2017: Xenopus laevis¹⁵⁵

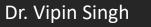
ARTICLE

OPEN doi:10.1038/nature25458

The axolotl genome and the evolution of key tissue formation regulators

Sergej Nowoshilow^{1,2,3}†*, Siegfried Schloissnig⁴*, Ji-Feng Fei⁵*, Andreas Dahl^{3,6}, Andy W. C. Pang⁷, Martin Pippel⁴, Sylke Winkler¹, Alex R. Hastie⁷, George Young⁸, Juliana G. Roscito^{1,9,10}, Francisco Falcon¹¹, Dunja Knapp³, Sean Powell⁴, Alfredo Cruz¹¹, Han Cao⁷, Bianca Habermann¹², Michael Hiller^{1,9,10}, Elly M. Tanaka^{1,2,3}† & Eugene W. Myers^{1,10}

REVIEW


doi:10.1038/nature24286

DNA sequencing at 40: past, present and future

Jay Shendure^{1,2}, Shankar Balasubramanian^{3,4}, George M. Church⁵, Walter Gilbert⁶, Jane Rogers⁷, Jeffery A. Schloss⁸ & Robert H. Waterston¹


This review commemorates the 40th anniversary of DNA sequencing, a period in which we have already witnessed multiple technological revolutions and a growth in scale from a few kilobases to the first human genome, and now to millions of human and a myriad of other genomes. DNA sequencing has been extensively and creatively repurposed, including as a 'counter' for a vast range of molecular phenomena. We predict that in the long view of history, the impact of DNA sequencing will be on a par with that of the microscope.

http://www.nature.com/doifinder/10.1038/nature24286

Largest genome ever sequenced

Scientists have decoded the genome of the **axolotl**, the Mexican amphibian.

Sergej Nowoshilow. Nature, 554, 50–55(2018)

It has **32 billion base pairs**, which makes it **ten times the size of the human** genome

Desired skill set

NGS Data is typically Big Data and requires computational and data analytics skills

Perl/ Python (Python is preferred)

R / Matlab

Biostatistics

Awk

Picard, SAMtools, Bedtools, Bismark(for BS Seq data)

Familiarity with Unix and Linux and High Performance Computing

Google 'vipin's classroom'

Next Webinar - 'Principles of Next Generation Sequencing Techniques and applications' at ICGEB, Delhi, 24.7.2020

Vipin's e-Classroom

About me Vipin's Webinar Vipin's Crackitts ... Student mails AIB Students' Seminar Series Vipin's Soft Skills classes Vipin's GATE TO NET Vipin's Study Material Vipin's NET

Dr. Vipin Singh

Associate Professor,

Coordinator - Corporate Resource Centre,

Coordinator Admissions

University Institute of Biotechnology,

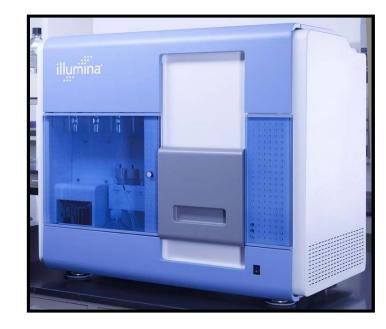
Chandigarh University, Mohali - June 2017

- "It is in a 'class' that magic truly happens - where 'nobodies' transform into 'somebodies'. In that sense teachers have immense power to transform an individual, the society and the Nation." Vipin Singh.

Educational Background

CSIR-UGC-NET- JRF, 2002,

Ph.D. - Life Sciences, CSIR-CCMB, Hyderabad - Thesis title - 'Genomic alterations: Sequence changes associated with repeats'


O Post Doctoral Fellow - Institute of Biology, Ecole Normal Superior, Paris (April 2019-April 2020)

Thank you !!!

