
Bulk RNA-seq analysis using R (Rsubread)

RNA Sequencing

RNA sequencing (RNA-Seq) uses the capabilities of high-throughput sequencing

methods to provide insight into the transcriptome of a cell. RNA-Seq provides far

higher coverage and greater resolution of the dynamic nature of the transcriptome.

Prequisites For R

Windows OS (at least 8GB RAM) with working command line

Install R(version "4.4") - https://cran.r-project.org/bin/windows/base/

Install RStudio - https://posit.co/download/rstudio-desktop/

After installing R run the following command to install Rsubread:

if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("Rsubread")

BiocManager::install("edgeR")

BiocManager::install("limma")

The input files for the RNAseq analysis are to be downlaoded from link

: https://figshare.com/s/f5d63d8c265a05618137 OR from the R folder

 SRR1552444.fastq.gz

 SRR1552445.fastq.gz

 SRR1552454.fastq.gz

 SRR1552455.fastq.gz

**Download the reference genome from this link :

https://figshare.com/s/f5d63d8c265a05618137 The following files are te refrence files

named as chr1_mm10 and the index file named: chr1_mm10.files, chr1_mm10.00.b.tab

and chr1_mm10.00.b.array.

Download all the files given under the R folder.

Set the working directory in R to where you have downloaded all the files:

setwd("C:/path/to/your/directory")

https://cran.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/
https://figshare.com/s/f5d63d8c265a05618137
https://figshare.com/s/f5d63d8c265a05618137

Step 1 : Loading R Packages

Rsubread provides functions for read alignment and feature counting. It is particularly

useful for handling large RNA-seq datasets efficiently.

Limma is an R/Bioconductor software package that provides an integrated solution for

analysing data from gene expression experiments. It contains rich features for handling

complex experimental designs and for information borrowing to overcome the

problem of small sample sizes.

edgeR is a Bioconductor package for differential expression analysis of digital gene

expression data.

library(Rsubread)

library(limma)

library(edgeR)

Step 2 : QC of the raw reads

FastQc to check the quality of raw reads

Download from the link below:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Step 3 : Listing FASTQ Files for Analysis

FASTQ files are a common format used to store raw sequence data from high-

throughput sequencing experiments. Each FASTQ file contains sequences of

nucleotides along with their corresponding quality scores. FastQ files contains raw

sequencing reads. Each file represents reads from a specific sample. This step is

important because it allows us to identify all the FASTQ files in the directory, ensuring

that we process all available samples.

reads1 <- list.files(path=".", pattern="*.fastq.gz$")

Step 4 : Building Index For Reference Genome

Indexing a reference genome is the process of generating a set of data structures that

facilitate rapid access to specific locations within the genomic sequence. Indexing is

crucial for improving the performance and speed of downstream analyses, such as

alignment and variant detection.

buildindex(basename="chr1_mm10",reference="chr1.fa")

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Step 5 : Alignment

The next step is to align the RNA-seq reads to the reference genome using the “align”

function from the Rsubread package. The input format is indicated as “FASTQ” to show

the input files are in FASTQ format. This process involves mapping the sequence of

nucleotides in the genome into a format that can be efficiently searched, enabling

bioinformatics tools to quickly locate and align sequencing reads to the reference

genome.

The output format is specifies as “BAM” to indicate that the output should be in BAM

format. The RNA seq reads are aligned with indexed reference genome.

align(index="chr1_mm10", readfile1=reads1, input_format="FASTQ",

output_format="BAM")

Step 6 : BAM File

A BAM file (*.bam) is the compressed binary version of a SAM file that is used to

represent aligned sequences. BAM files store aligned sequence data, which includes

information on where each read maps to the reference genome. BAM files contain a

header section and an alignment section: Header—Contains information about the

entire file, such as sample name, sample length, and alignment method. Alignments in

the alignments section are associated with specific information in the header section.

Alignments—Contains read name, read sequence, read quality, alignment information,

and custom tags. The read name includes the chromosome, start coordinate,

alignment quality, and the match descriptor string.

The alignments section includes the following information for each or read pair:

 RG: Read group, which indicates the number of reads for a specific sample.

 BC: Barcode tag, which indicates the demultiplexed sample ID associated with

the read.

 SM: Single-end alignment quality.

 AS: Paired-end alignment quality.

 NM: Edit distance tag, which records the Levenshtein distance between the read

and the reference.

 XN: Amplicon name tag, which records the amplicon tile ID associated with the

read.

bamfiles <-list.files(path=".",pattern = "*.BAM$")

Step 7 : Feature Counts

FeatureCounts is a function under RSubread used in bioinformatics for counting the

number of reads (from RNA sequencing) that map to genomic features such as genes,

exons, or genomic regions. It is part of the Subread package.

This step is to count the number of reads that map to each gene using the

“featureCounts” function.

This step is crucial because it provides the raw data for differential expression analysis.

fc <- featureCounts(files=bamfiles,annot.inbuilt="mm10")

names(fc)

fc$stat

head(fc$annotation)

write.csv(fc$counts, file = "path/to/your/directory")

write.csv(fc$annotation, file = "path/to/your/directory")

write.csv(fc$targets, file = "path/to/your/directory")

Step 8 : Loading Sample Information from the CSV File

Reading sample information provides the metadata needed for differential expression

analysis, linking read counts to experimental conditions and ensuring accurate

statistical analysis. A sample file needs to be created with the information given in the

image and save the file with .csv extension. Sample Info is used to describe the

experimental condition associated with each sample. Conditions being control and

treatment.

Control : Untreated or baseline state

Treatment : Manipulated for experiment

sampleInfo <- read.table("sample_info.csv", header=TRUE, sep=",",

row.names=1)

STEP 9: Differential Gene Expression

Differential expression is the process of determining the differences in gene expression

levels between different biological conditions. It identifies which set of genes are

expressed at different levels under varying experimental conditions, such as

treatments, time points, or disease states.

edgeR stores data in a simple list-based data object called a DGEList. This type of

object is easy to use because it can be manipulated like any list in R.

dgeFull is a variable here in which we are saving DGEList.

dgeFull <-DGEList(counts=fc$counts,

gene=fc$annotation[,c("GeneID","Length")],group=sampleInfo$condition)

The code below filters out genes that have zero counts across all samples.

dgeFull <- DGEList(dgeFull$counts[apply(dgeFull$counts, 1, sum) != 0,

],group=dgeFull$samples$group)

head(dgeFull$counts)

The normLibSizes function normalizes the library sizes in such a way to minimize the

log-fold changes between the samples for most genes. The default method for

computing these scale factors uses a trimmed mean of M-values (TMM) between each

pair of samples.

TMM stands for Trimmed Mean of M-values. It is a normalization method that adjusts

for compositional differences between samples. TMM aims to make the majority of

genes have similar expression levels across samples by trimming extreme values and

calculating a scaling factor for each sample.

We call the product of the original library size and the scaling factor the effective

library size, i.e., the normalized library size. The effective library size replaces the

original library size in all downsteam analyses.

dgeFull <- calcNormFactors(dgeFull, method="TMM")

dgeFull$samples

head(dgeFull$counts)

eff.lib.size <- dgeFull$samples$lib.size*dgeFull$samples$norm.factors

normCounts <- cpm(dgeFull)

The pseudo-counts represent the equivalent counts would have been observed had

the library sizes all been equal, assuming the fitted model. The pseudo-counts are

computed for a specific purpose, and their computation depends on the experimental

design as well as the library sizes.

pseudoNormCounts <- log2(normCounts + 1)

The function plotMDS draws a multi-dimensional scaling plot of the RNA samples in

which distances correspond to leading log-fold-changes between each pair of RNA

samples. The leading log-fold-change is the average (root-mean-square) of the largest

absolute log-fold changes between each pair of samples.

plotMDS(pseudoNormCounts)

estimateCommonDisp Estimate Common Negative Binomial Dispersion by

Conditional Maximum Likelihood

The estimateCommonDisp function in the edgeR package is used to estimate a

common dispersion parameter for a set of counts following a negative binomial

distribution. This helps in accurately modeling the data and improving the reliability of

downstream analyses, such as identifying differentially expressed genes.

dgeFull <- estimateCommonDisp(dgeFull)

EstimateTagwiseDisp Estimate Empirical Bayes Tagwise Dispersion Values

The estimateTagwiseDisp function refines the RNA-seq data analysis by providing

gene-specific dispersion estimates using the empirical Bayes method. This process

enhances the accuracy of differential expression analysis by accounting for the unique

variability of each gene.

dgeFull <- estimateTagwiseDisp(dgeFull)

dgeFull

The exact test is a statistical method used in RNA-seq data analysis to identify

differentially expressed genes between experimental groups. This test compares the

read counts for each gene between groups, taking into account the estimated

dispersion.By performing the exact test, one can determine which genes show

statistically significant differences in expression between conditions, providing insights

into the underlying biological processes and responses.

dgeTest <- exactTest(dgeFull)

dgeTest

write.csv(dgeTest, file = "path/to/your/directory")

hist(dgeTest$table[,"PValue"], breaks=50)

hist(dgeTestFilt$table[,"PValue"], breaks=50)

Bulk RNA-seq analysis using Python

Pyrpipe Setup and Usage Guide

Introduction

This guide will walk you through setting up a Conda environment for

using Pyrpipe and related bioinformatics tools. Pyrpipe is a Python package designed

for the reproducible analysis of RNA-Seq data. It integrates various popular RNA-Seq

analysis tools into a streamlined workflow.

Prerequisites

We need Miniconda for this. Miniconda is a minimal installer for Conda, which is a

package management and environment management system. It provides a lightweight

alternative to the full Anaconda distribution. Anaconda is a comprehensive open-

source distribution of Python and R designed specifically for scientific computing, data

analysis, and machine learning. It includes a wide range of pre-installed packages and

tools for data science and scientific computing, making it a popular choice for many

researchers and developers.

Ensure you have Conda installed on your system. If you don't have Conda, you can

install it by following the instructions on the Conda

website- https://docs.anaconda.com/miniconda/

Step 1: Configure Conda Channels

Before installing Pyrpipe, ensure that Conda channels are added in the correct order:

bash

conda config --add channels defaults

conda config --add channels bioconda

conda config --add channels conda-forge

This will ensure that the necessary packages are sourced from the correct channels.

Step 2: Create a New Conda Environment

Next, create a new Conda environment named pyrpipe with Python 3.8:

bash

conda create -n pyrpipe python=3.8

conda activate pyrpipe

Step 3: Install Pyrpipe and Required Tools

With the environment activated, install Pyrpipe along with the required bioinformatics

tools:

bash

https://docs.anaconda.com/miniconda/

conda install -c bioconda pyrpipe star=2.7.7a sra-tools=2.10.9

stringtie=2.1.4 trim-galore=0.6.6 orfipy=0.0.3 salmon=1.4.0

This command installs the following tools:

 Pyrpipe: Main Python package for RNA-Seq analysis.

 STAR: RNA-Seq read aligner.

 SRA-Tools: Tools for working with sequence data from NCBI's Sequence Read

Archive.

 StringTie: Transcriptome assembly and quantification.

 Trim Galore: A wrapper around Cutadapt and FastQC for quality control and

trimming.

 Orfipy: Tool for finding open reading frames (ORFs).

 Salmon: Quantification of transcript abundance.

Step 4: Download Test Sample Files

To get started with Pyrpipe, you'll need a sample dataset. Run the following commands

in your bash terminal to download the necessary files:

bash

wget ftp://ftp.ensemblgenomes.org/pub/release-

→46/plants/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.d→na.

toplevel.fa.gz

gunzip Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz

wget ftp://ftp.ensemblgenomes.org/pub/release-

46/plants/gtf/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.46.gtf.gz

gunzip Arabidopsis_thaliana.TAIR10.46.gtf.gz

These commands download the reference genome and GTF file for Arabidopsis

thaliana from the Ensembl Plants database.

Simple RNA-Seq Processing Pipeline

RNA-Seq processing with Pyrpipe is straightforward. The following Python script

provides a basic example of using Pyrpipe on publicly available RNA-Seq data:

python

#define some variables

run_id = 'SRR976159'

working_dir = 'example_output'

gen = 'Arabidopsis_thaliana.TAIR10.dna.toplevel.fa'

ann = 'Arabidopsis_thaliana.TAIR10.46.gtf'

star_index = 'star_index/athaliana'

#initialize objects

#creates a STAR object to use with threads

star = mapping.Star(index=star_index, genome=gen, threads=4)

#use Trim Galore for trimming

trim_galore = qc.Trimgalore()

#Stringtie for assembly

stringtie = assembly.Stringtie(guide=ann)

#create SRA object; this will download FASTQ if it doesn't exist

srr_object = sra.SRA(run_id, directory=working_dir)

#create a pipeline using the objects

srr_object.trim(trim_galore).align(star).assemble(stringtie)

#The assembled transcripts are in srr_object.gtf

print('Final result', srr_object.gtf)

Explanation of the Code

1. Imports the required Pyrpipe modules.

2. Lines 3 to 7 define variables for reference files, the output directory, and the

STAR index. The output directory will be used to store the downloaded RNA-

Seq data and will be the default directory for all the results.

3. Creates a STAR object: It takes the index and genome as parameters. It will

automatically verify the index, and if an index is not found, it will use the

genome to build one and save it to the index path provided.

4. Creates a Trimgalore object.

5. Creates a Stringtie object.

6. Creates an SRA object: This represents the RNA-Seq data. If the raw data is not

available on disk, it auto-downloads it via fasterq-dump.

7. Pipeline creation:

o trim(): Takes a QC type object and performs trimming

via qc.perform_qc method. The trimmed FASTQ files are updated in the

SRA object.

o align(): Takes a mapping type object and performs alignment

via mapping.perform_alignment method. The resulting BAM file is stored

in SRA.bam_path.

o assemble(): Takes an assembly type object and performs assembly

via mapping.perform_assembly method. The resulting GTF file is stored

in SRA.gtf.

This pipeline downloads FASTQ files from NCBI-SRA, uses Trim Galore for trimming,

STAR for alignment to the reference genome, and Stringtie for assembly.

