
Bulk RNA-seq analysis using R (Rsubread) 

RNA Sequencing 

RNA sequencing (RNA-Seq) uses the capabilities of high-throughput sequencing 

methods to provide insight into the transcriptome of a cell. RNA-Seq provides far 

higher coverage and greater resolution of the dynamic nature of the transcriptome. 

Prequisites For R 

Windows OS (at least 8GB RAM) with working command line 

Install R(version "4.4") - https://cran.r-project.org/bin/windows/base/ 

Install RStudio - https://posit.co/download/rstudio-desktop/ 

After installing R run the following command to install Rsubread: 

if (!require("BiocManager", quietly = TRUE)) 

  

install.packages("BiocManager") 

  

BiocManager::install("Rsubread") 

 

BiocManager::install("edgeR") 

 

BiocManager::install("limma") 

The input files for the RNAseq analysis are to be downlaoded from link 

: https://figshare.com/s/f5d63d8c265a05618137 OR from the R folder 

 SRR1552444.fastq.gz 

 SRR1552445.fastq.gz 

 SRR1552454.fastq.gz 

 SRR1552455.fastq.gz 

**Download the reference genome from this link : 

https://figshare.com/s/f5d63d8c265a05618137 The following files are te refrence files 

named as chr1_mm10 and the index file named: chr1_mm10.files, chr1_mm10.00.b.tab 

and chr1_mm10.00.b.array. 

Download all the files given under the R folder. 

Set the working directory in R to where you have downloaded all the files: 

setwd("C:/path/to/your/directory") 

https://cran.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/
https://figshare.com/s/f5d63d8c265a05618137
https://figshare.com/s/f5d63d8c265a05618137


Step 1 : Loading R Packages 

Rsubread provides functions for read alignment and feature counting. It is particularly 

useful for handling large RNA-seq datasets efficiently. 

Limma is an R/Bioconductor software package that provides an integrated solution for 

analysing data from gene expression experiments. It contains rich features for handling 

complex experimental designs and for information borrowing to overcome the 

problem of small sample sizes. 

edgeR is a Bioconductor package for differential expression analysis of digital gene 

expression data. 

library(Rsubread) 

 

library(limma) 

 

library(edgeR) 

Step 2 : QC of the raw reads 

FastQc to check the quality of raw reads 

Download from the link below: 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

Step 3 : Listing FASTQ Files for Analysis 

FASTQ files are a common format used to store raw sequence data from high-

throughput sequencing experiments. Each FASTQ file contains sequences of 

nucleotides along with their corresponding quality scores. FastQ files contains raw 

sequencing reads. Each file represents reads from a specific sample. This step is 

important because it allows us to identify all the FASTQ files in the directory, ensuring 

that we process all available samples. 

reads1 <- list.files(path=".", pattern="*.fastq.gz$") 

Step 4 : Building Index For Reference Genome 

Indexing a reference genome is the process of generating a set of data structures that 

facilitate rapid access to specific locations within the genomic sequence. Indexing is 

crucial for improving the performance and speed of downstream analyses, such as 

alignment and variant detection. 

buildindex(basename="chr1_mm10",reference="chr1.fa") 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Step 5 : Alignment 

The next step is to align the RNA-seq reads to the reference genome using the “align” 

function from the Rsubread package. The input format is indicated as “FASTQ” to show 

the input files are in FASTQ format. This process involves mapping the sequence of 

nucleotides in the genome into a format that can be efficiently searched, enabling 

bioinformatics tools to quickly locate and align sequencing reads to the reference 

genome. 

The output format is specifies as “BAM” to indicate that the output should be in BAM 

format. The RNA seq reads are aligned with indexed reference genome. 

align(index="chr1_mm10", readfile1=reads1, input_format="FASTQ", 

output_format="BAM") 

Step 6 : BAM File 

A BAM file (*.bam) is the compressed binary version of a SAM file that is used to 

represent aligned sequences. BAM files store aligned sequence data, which includes 

information on where each read maps to the reference genome. BAM files contain a 

header section and an alignment section: Header—Contains information about the 

entire file, such as sample name, sample length, and alignment method. Alignments in 

the alignments section are associated with specific information in the header section. 

Alignments—Contains read name, read sequence, read quality, alignment information, 

and custom tags. The read name includes the chromosome, start coordinate, 

alignment quality, and the match descriptor string. 

The alignments section includes the following information for each or read pair: 

 RG: Read group, which indicates the number of reads for a specific sample. 

 BC: Barcode tag, which indicates the demultiplexed sample ID associated with 

the read. 

 SM: Single-end alignment quality. 

 AS: Paired-end alignment quality. 

 NM: Edit distance tag, which records the Levenshtein distance between the read 

and the reference. 

 XN: Amplicon name tag, which records the amplicon tile ID associated with the 

read. 

bamfiles <-list.files(path=".",pattern = "*.BAM$") 

Step 7 : Feature Counts 



FeatureCounts is a function under RSubread used in bioinformatics for counting the 

number of reads (from RNA sequencing) that map to genomic features such as genes, 

exons, or genomic regions. It is part of the Subread package. 

This step is to count the number of reads that map to each gene using the 

“featureCounts” function. 

This step is crucial because it provides the raw data for differential expression analysis. 

fc <- featureCounts(files=bamfiles,annot.inbuilt="mm10") 

 

names(fc) 

 

fc$stat 

 

head(fc$annotation) 

 

write.csv(fc$counts, file = "path/to/your/directory") 

 

write.csv(fc$annotation, file = "path/to/your/directory") 

 

write.csv(fc$targets, file = "path/to/your/directory") 

Step 8 : Loading Sample Information from the CSV File 

Reading sample information provides the metadata needed for differential expression 

analysis, linking read counts to experimental conditions and ensuring accurate 

statistical analysis. A sample file needs to be created with the information given in the 

image and save the file with .csv extension. Sample Info is used to describe the 

experimental condition associated with each sample. Conditions being control and 

treatment. 

Control : Untreated or baseline state 

Treatment : Manipulated for experiment 

sampleInfo <- read.table("sample_info.csv", header=TRUE, sep=",", 

row.names=1) 

STEP 9: Differential Gene Expression 

Differential expression is the process of determining the differences in gene expression 

levels between different biological conditions. It identifies which set of genes are 

expressed at different levels under varying experimental conditions, such as 

treatments, time points, or disease states. 

edgeR stores data in a simple list-based data object called a DGEList. This type of 

object is easy to use because it can be manipulated like any list in R. 



dgeFull is a variable here in which we are saving DGEList. 

dgeFull <-DGEList(counts=fc$counts, 

gene=fc$annotation[,c("GeneID","Length")],group=sampleInfo$condition) 

The code below filters out genes that have zero counts across all samples. 

dgeFull <- DGEList(dgeFull$counts[apply(dgeFull$counts, 1, sum) != 0, 

],group=dgeFull$samples$group) 

 

head(dgeFull$counts) 

The normLibSizes function normalizes the library sizes in such a way to minimize the 

log-fold changes between the samples for most genes. The default method for 

computing these scale factors uses a trimmed mean of M-values (TMM) between each 

pair of samples. 

TMM stands for Trimmed Mean of M-values. It is a normalization method that adjusts 

for compositional differences between samples. TMM aims to make the majority of 

genes have similar expression levels across samples by trimming extreme values and 

calculating a scaling factor for each sample. 

We call the product of the original library size and the scaling factor the effective 

library size, i.e., the normalized library size. The effective library size replaces the 

original library size in all downsteam analyses. 

dgeFull <- calcNormFactors(dgeFull, method="TMM") 

 

dgeFull$samples 

 

head(dgeFull$counts) 

 

eff.lib.size <- dgeFull$samples$lib.size*dgeFull$samples$norm.factors 

 

normCounts <- cpm(dgeFull) 

The pseudo-counts represent the equivalent counts would have been observed had 

the library sizes all been equal, assuming the fitted model. The pseudo-counts are 

computed for a specific purpose, and their computation depends on the experimental 

design as well as the library sizes. 

pseudoNormCounts <- log2(normCounts + 1) 

The function plotMDS draws a multi-dimensional scaling plot of the RNA samples in 

which distances correspond to leading log-fold-changes between each pair of RNA 

samples. The leading log-fold-change is the average (root-mean-square) of the largest 

absolute log-fold changes between each pair of samples. 

plotMDS(pseudoNormCounts) 

estimateCommonDisp Estimate Common Negative Binomial Dispersion by 

Conditional Maximum Likelihood 



The estimateCommonDisp function in the edgeR package is used to estimate a 

common dispersion parameter for a set of counts following a negative binomial 

distribution. This helps in accurately modeling the data and improving the reliability of 

downstream analyses, such as identifying differentially expressed genes. 

dgeFull <- estimateCommonDisp(dgeFull) 

EstimateTagwiseDisp Estimate Empirical Bayes Tagwise Dispersion Values 

The estimateTagwiseDisp function refines the RNA-seq data analysis by providing 

gene-specific dispersion estimates using the empirical Bayes method. This process 

enhances the accuracy of differential expression analysis by accounting for the unique 

variability of each gene. 

dgeFull <- estimateTagwiseDisp(dgeFull) 

 

dgeFull 

The exact test is a statistical method used in RNA-seq data analysis to identify 

differentially expressed genes between experimental groups. This test compares the 

read counts for each gene between groups, taking into account the estimated 

dispersion.By performing the exact test, one can determine which genes show 

statistically significant differences in expression between conditions, providing insights 

into the underlying biological processes and responses. 

dgeTest <- exactTest(dgeFull) 

 

dgeTest 

 

write.csv(dgeTest, file = "path/to/your/directory") 

 

hist(dgeTest$table[,"PValue"], breaks=50) 

 

hist(dgeTestFilt$table[,"PValue"], breaks=50) 

 

Bulk RNA-seq analysis using Python 

Pyrpipe Setup and Usage Guide 

Introduction 

This guide will walk you through setting up a Conda environment for 

using Pyrpipe and related bioinformatics tools. Pyrpipe is a Python package designed 

for the reproducible analysis of RNA-Seq data. It integrates various popular RNA-Seq 

analysis tools into a streamlined workflow. 



Prerequisites 

We need Miniconda for this. Miniconda is a minimal installer for Conda, which is a 

package management and environment management system. It provides a lightweight 

alternative to the full Anaconda distribution. Anaconda is a comprehensive open-

source distribution of Python and R designed specifically for scientific computing, data 

analysis, and machine learning. It includes a wide range of pre-installed packages and 

tools for data science and scientific computing, making it a popular choice for many 

researchers and developers. 

Ensure you have Conda installed on your system. If you don't have Conda, you can 

install it by following the instructions on the Conda 

website- https://docs.anaconda.com/miniconda/ 

Step 1: Configure Conda Channels 

Before installing Pyrpipe, ensure that Conda channels are added in the correct order: 

bash 

conda config --add channels defaults 

conda config --add channels bioconda 

conda config --add channels conda-forge 

This will ensure that the necessary packages are sourced from the correct channels. 

Step 2: Create a New Conda Environment 

Next, create a new Conda environment named pyrpipe with Python 3.8: 

bash 

conda create -n pyrpipe python=3.8 

conda activate pyrpipe 

Step 3: Install Pyrpipe and Required Tools 

With the environment activated, install Pyrpipe along with the required bioinformatics 

tools: 

bash 

https://docs.anaconda.com/miniconda/


conda install -c bioconda pyrpipe star=2.7.7a sra-tools=2.10.9 

stringtie=2.1.4 trim-galore=0.6.6 orfipy=0.0.3 salmon=1.4.0 

This command installs the following tools: 

 Pyrpipe: Main Python package for RNA-Seq analysis. 

 STAR: RNA-Seq read aligner. 

 SRA-Tools: Tools for working with sequence data from NCBI's Sequence Read 

Archive. 

 StringTie: Transcriptome assembly and quantification. 

 Trim Galore: A wrapper around Cutadapt and FastQC for quality control and 

trimming. 

 Orfipy: Tool for finding open reading frames (ORFs). 

 Salmon: Quantification of transcript abundance. 

Step 4: Download Test Sample Files 

To get started with Pyrpipe, you'll need a sample dataset. Run the following commands 

in your bash terminal to download the necessary files: 

bash 

wget ftp://ftp.ensemblgenomes.org/pub/release-

→46/plants/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.d→na.

toplevel.fa.gz 

gunzip Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz 

wget ftp://ftp.ensemblgenomes.org/pub/release-

46/plants/gtf/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.46.gtf.gz 

gunzip Arabidopsis_thaliana.TAIR10.46.gtf.gz 

These commands download the reference genome and GTF file for Arabidopsis 

thaliana from the Ensembl Plants database. 

Simple RNA-Seq Processing Pipeline 

RNA-Seq processing with Pyrpipe is straightforward. The following Python script 

provides a basic example of using Pyrpipe on publicly available RNA-Seq data: 

python 

 

#define some variables 

run_id = 'SRR976159' 

working_dir = 'example_output' 



gen = 'Arabidopsis_thaliana.TAIR10.dna.toplevel.fa' 

ann = 'Arabidopsis_thaliana.TAIR10.46.gtf' 

star_index = 'star_index/athaliana' 

 

#initialize objects 

#creates a STAR object to use with threads 

star = mapping.Star(index=star_index, genome=gen, threads=4) 

 

#use Trim Galore for trimming 

trim_galore = qc.Trimgalore() 

 

#Stringtie for assembly 

stringtie = assembly.Stringtie(guide=ann) 

 

#create SRA object; this will download FASTQ if it doesn't exist 

srr_object = sra.SRA(run_id, directory=working_dir) 

 

#create a pipeline using the objects 

srr_object.trim(trim_galore).align(star).assemble(stringtie) 

 

#The assembled transcripts are in srr_object.gtf 

print('Final result', srr_object.gtf) 

Explanation of the Code 

1. Imports the required Pyrpipe modules. 

2. Lines 3 to 7 define variables for reference files, the output directory, and the 

STAR index. The output directory will be used to store the downloaded RNA-

Seq data and will be the default directory for all the results. 

3. Creates a STAR object: It takes the index and genome as parameters. It will 

automatically verify the index, and if an index is not found, it will use the 

genome to build one and save it to the index path provided. 

4. Creates a Trimgalore object. 

5. Creates a Stringtie object. 

6. Creates an SRA object: This represents the RNA-Seq data. If the raw data is not 

available on disk, it auto-downloads it via fasterq-dump. 

7. Pipeline creation: 

o trim(): Takes a QC type object and performs trimming 

via qc.perform_qc method. The trimmed FASTQ files are updated in the 

SRA object. 

o align(): Takes a mapping type object and performs alignment 

via mapping.perform_alignment method. The resulting BAM file is stored 

in SRA.bam_path. 

o assemble(): Takes an assembly type object and performs assembly 

via mapping.perform_assembly method. The resulting GTF file is stored 

in SRA.gtf. 

This pipeline downloads FASTQ files from NCBI-SRA, uses Trim Galore for trimming, 

STAR for alignment to the reference genome, and Stringtie for assembly. 


