# Introduction to Machine Learning (ML) for Tabular Data

# **Prof. Ishaan Gupta**

Functional Genomics Lab
Department of Biochemical Engineering and Biotechnology
Indian Institute of Technology, Delhi

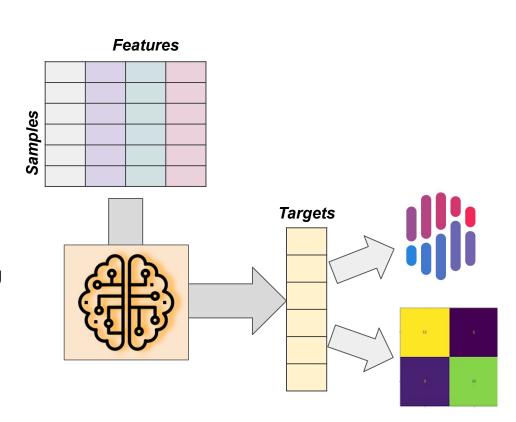


# **Machine Learning for Tabular Data**

- Data Landscape in Biology/Biomedicine
- Introduction to Tabular Data
- Machine Learning Workflow
- Challenges in Handling Tabular Data
  - Data Cleaning
  - Handling Class Imbalance
  - Feature Selection

#### Models

- Linear Regression and SVM
- Random Forest and Gradient Boosting
- Deep Learning Models
- Model Training
- Model Evaluation and Interpretability
- Model Deployment
- Translational Application



# Data Landscape in Biology: A Machine Learning Playground

- Modern biology/biomedical research generates vast, complex,heterogeneous and high-dimensional data.
- Some of the common types of biomedical data are as follows:

| Data Type    | Example                                                       | ML Models                 |  |
|--------------|---------------------------------------------------------------|---------------------------|--|
| Images       | Histopathology slides, MRI, CT scans                          | CNN, ViT, YOLO, Detectron |  |
| Sequences    | DNA, RNA, Protein sequences                                   | RNN, LLM                  |  |
| Tabular Data | Clinical lab tests, omics profiles, Electronic Health Records | LR, RF, SVM, XGBoost      |  |

- Most clinical and experimental datasets are represented in tabular form.
- Examples:
  - Gene Expression Matrices: Patients × Gene expression levels
  - o **Proteomic Profiles:** Protein abundances
  - Patient Metadata: Age, BMI, comorbidities, treatment outcomes
  - Electronic Health Records (EHRs): Integrated clinical variables across populations

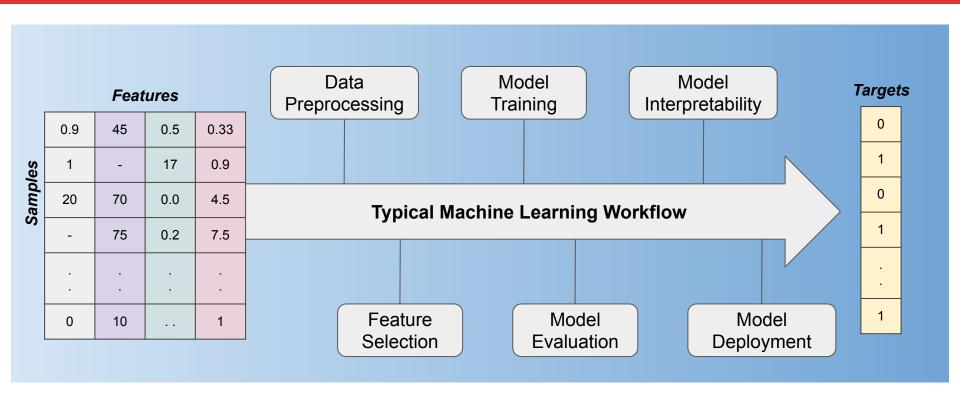
## What is Tabular Data?

- Tabular data are often represented in a matrix-like format — rows and columns.
- Rows correspond to samples, patients, or observations.
- Columns represent features, variables, or biomarkers.
- Key challenges in working with tabular data are as follows:
  - Heterogeneous data
  - Data sparsity
  - High dimensionality (m << n).
  - Correlated variables
  - Imbalanced classes
  - Noisy data
  - Outliers

| Sample | V1  | V2 | <br>Vn  | Target |
|--------|-----|----|---------|--------|
| S1     | 0.9 | 45 | <br>0.5 | 0      |
| S2     | 1   | -  | <br>17  | 1      |
| S3     | 20  | 70 | <br>0.0 | 0      |
| S4     | -   | 40 | <br>0.2 | 1      |
|        |     |    |         |        |
|        |     |    |         |        |
| Sm     | 0   | 10 | <br>0.9 | 1      |

Tabular data consisting of **m** samples and **n** variables with a **binary target** (0 & 1).

# The Machine Learning Workflow



# **Data Preprocessing**

- **Data Cleaning**: remove duplicates, \*imputing missing values.
- Feature Encoding: converting categorical variable (e.g. gender) into numeric.
- Normalization/Scaling (\*z-score, min-max): Ensures equal contribution of all features during model training
- Handling Outliers: identifying and removing outliers
- Feature Selection: removing multicollinearity (\*ANOVA) and dimensionality reduction
- Over/Under Sampline: handling class imbalance
- **Feature Engineering**: Introducing meaningful features derived from existing features.
  - Example: In tumor classification, tumor volume = 0.5xL×W² is more meaningful than tumor length or width alone.
- Splitting the Dataset:
  - Data split: Training (70%), Validation (15%), Test (15%)

# Data Preprocessing (Continued)

### • Imputation

- Lower detection limit (LOD).
- Mean or Median
- o Imputation Algorithms: KNN

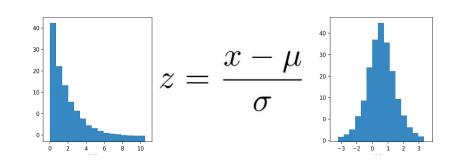
#### Z-Score Normalization

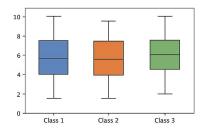
- Mean = 0
- Standard deviation = 1

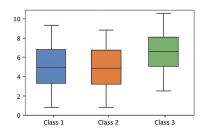
### Feature Selection using ANOVA

Identify features that significantly (F-statistics)
differ across classes i.e important features
otherwise collinear/redundant features.

$$F = \frac{\text{Variance between groups}}{\text{Variance within groups}}$$

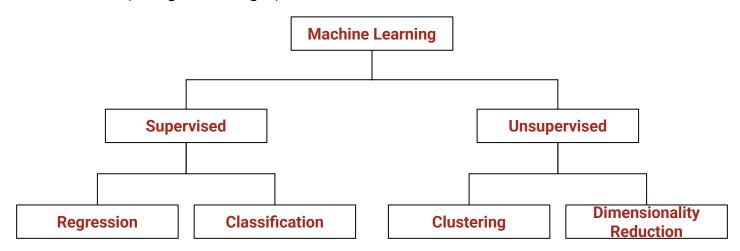






## **Machine Learning**

- Machine Learning (ML) is a subset of Artificial Intelligence (AI) that enables computers to learn from data and make predictions without being explicitly programmed.
- Can be broadly divided into Supervised and Unsupervised learning, based on the availability of labeled data during training.
- Supervised learning, the most common ML type, is divided into Regression (continuous target) and Classification (categorical target).



# **Objective of a Machine Learning Model**

Let's suppose we have a model (f) with parameters  $\beta_1, \beta_2, \ldots, \beta_n$  and b.

$$f(x) = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + b$$

where  $x = x_{1}, x_{2}, \dots x_{n}$  represent rows of feature matrix

| Sample | х1  | x2 | <br>xn  | Target |
|--------|-----|----|---------|--------|
| S1     | 0.9 | 45 | <br>0.5 | 0      |

Our objective is to find the optimal parameters:

$$\theta = \{\beta_1, \beta_2, \ldots, \beta_n, b\}$$

such that loss (prediction error) is minimized:

$$min // y - f(x) //^2$$

## Linear Models: Linear Regression (LR) and SVM

## Linear Regression (LR)

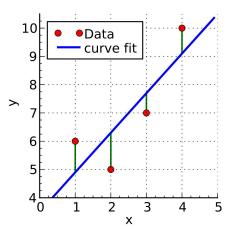


Image source: Wikipedia - "Linear regression"

- Fits a **best-fit line** (**blue**) through the data capture the relationship between input features and the target variable.
- Goal: Minimize the difference between predicted and actual values (loss).

### Support Vector Machine (SVM)

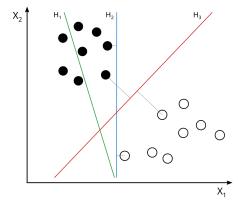
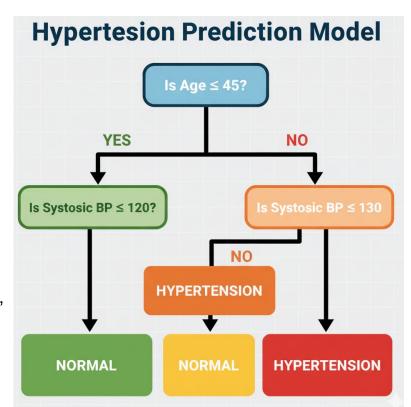


Image source: Wikipedia - "Support vector machine"

- Find the **optimal hyperplane** (H3: red) that separates classes.
- Maximize the margin i.e. the distance between the hyperplane and the nearest data points (support vectors).
- Goal: Achieve maximum separation between classes while minimizing misclassification.

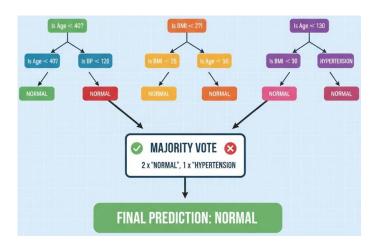
## **Tree Based Model: Decision Tree**

- A decision tree learns simple if—then rules from data to make predictions.
- Works by splitting data into branches based on feature values, forming a tree-like structure.
  - Internal node :decision based on a features
  - Branch: outcome
  - Leafs: final prediction
- Goal: Create the most homogeneous possible subsets at each split using metrics like Gini impurity, Entropy, or Variance reduction.
- Ensembles of decision trees form models like Random Forest and Gradient Boosting for better accuracy and robustness.



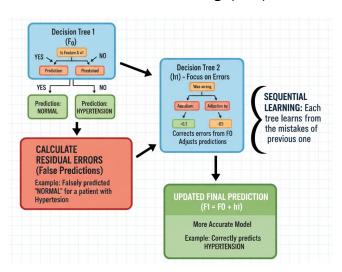
## **Ensemble Models: Random Forests and Gradient Boosting**

#### Random Forest (RF)



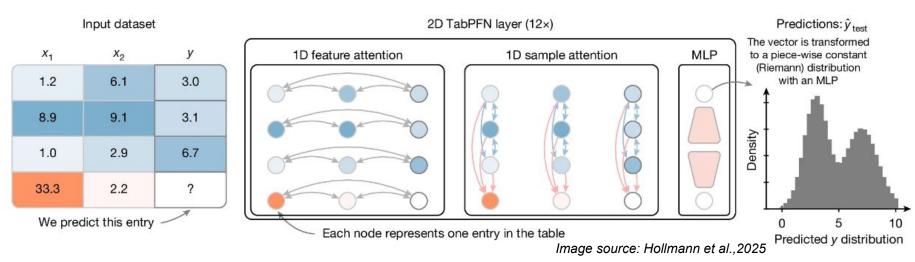
- An ensemble of many decision trees, each trained on random samples and features.
- Final prediction = majority vote (classification) or average (regression).

### Gradient Boosting (GB)



- Builds trees sequentially, each new tree corrects the errors of the previous ones.
- Learns by minimizing a loss function step by step.

# Deep Learning Models: Tabular foundation models (TFMs)



- Traditional deep learning models requires large datasets for training, but experimental tabular data often has m << n.</li>
- TFMs overcome this limitation by learning general tabular patterns during pre-training using millions of synthetic tabular datasets.
- A pre-trained TFM can achieve high performance even with few training samples.

## **Tabular foundation models: TabPFN**

- TabPFN stands for Tabular Prior-Data Fitted Network.
- It's a pre-trained Transformer Encoder model.
   Trained on 130 million synthetic datasets.
- Training objective was to predict the masked target values (y) in those tabular datasets.
- It generally works well on small datasets (<10,000 samples) in a single forward pass.</li>

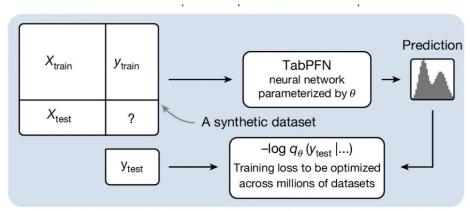
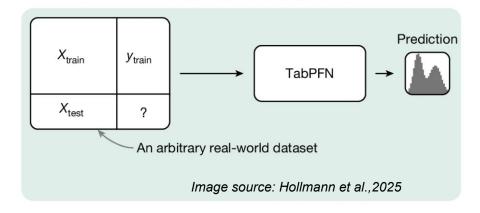


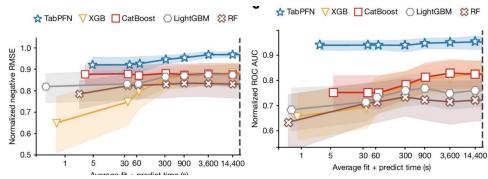
Image source: Hollmann et al., 2025

- TabPFN processes the entire dataset (features and target labels) as single set of tokens.
- No need of data preprocessing (imputation, class imbalance, data cleaning, etc.)

## **Tabular foundation models: TabPFN**

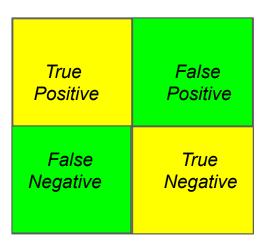
- Benchmarked on OpenML CC-18 dataset (collection of 72 real-world classification datasets) and from published studies.
- During evaluation phase the target variable can be continuous (regression) or categorical variable (classification)
- Significantly outperformed the ML (XGBoost, LightGBM, & CatBoost) and DL models.
- Performance drops on
   larger datasets (>10,000 samples).





## **Model Evaluation**

• During the evaluation phase, the trained model is tested on unseen dataset (**test set**) to assess its **accuracy**, **generalization**, and **reliability** using various **evaluation metrics**.



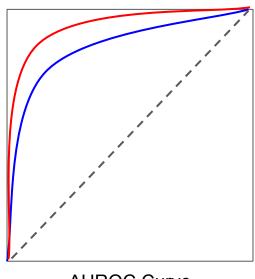
**Confusion Matrix** 

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 - Score = \frac{2 \times (Precision \times Recall)}{Precision + Recall}$$



**AUROC Curve** 

# **Model Interpretability**

- Self-Explainable Models (Linear Regression, Decision Trees, Random Forests)
  - o In case of Linear Regression, **model's parameters**  $(\beta_i)$  indicates the effect of each feature on model's predictions.
  - $\circ$  Example: A model for BP prediction, with age (β = 0.6) as a feature. The β indicates that for every 1-year increase in age, BP increases by 0.6 mmHg, holding other features constant.
- SHAP (SHapley Additive exPlanations)
  - Based on game theory (Shapley values).
  - Explains each prediction by fairly distributing contribution among features.
- **LIME** (Local Interpretable Model-Agnostic Explanations)
  - Explains a single prediction by approximating the complex model with a simple one.
  - Perturbs input slightly to see how predictions change





# **Model Deployment**

- Model deployment is the final stage of a machine learning workflow, where the trained model is made available for silent trails and real-world use.
- **Development** (Jupyter) to **Production** (Web App)
- Typical steps involves: Saving model (.pkl) →Build an App (Streamlit) → Host model (Local Machine) → Monitor real world performance
- Some of the lightweight and easy-to-deploy frameworks for model deployment and visualization are as follows:







Shiny for Python Plotly Dash

# **Translational Applications (Case Studies)**

• Risk Stratification (High vs Low) Model for pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) [Al-Hussaini et al, 2024]

 ML based biomarker discovery for pre-metabolic syndrome and metabolic syndrome using lipidomics profiling [<u>Huang et al. 2024</u>].

Precision Medicine for Multiple Myeloma Patients Using ML-Enabled Proteomic Profiles
 [Katsenou et al., 2023].

• **Disease prediction** in **Incident Atrial Fibrillation** Using Electronic Health Record Data with Machine Learning [<u>Tiwari et al.</u>, <u>2019</u>].

# Conclusion & Key Takeaways

- Most biomedical and clinical datasets are tabular (heterogeneous, noisy, and often imbalanced).
- Preprocessing and feature selection form the foundation for reliable modeling.
- Gradient Boosting models remain strong baselines for tabular data.
- Tabular Foundation Models (TFMs) are emerging, enabling accurate predictions even on small datasets.
- A rigorous evaluation strategy is crucial to build a robust model for real world application
- Interpretable ML models transform data into actionable biomedical insights.
- Integrating ML with EHR, proteomic, and genomic data accelerates precision medicine through data-driven insights.

# **Thank You**

## **GitHub Link**

https://github.com/rajanbit/ML-for-Tabular-Data-ICGEB-Workshop-2025

OR

- > github.com
- > Search "icgeb workshop 2025"
- > Open the search result