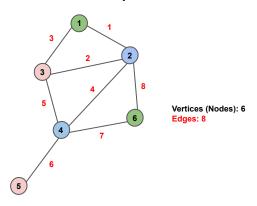
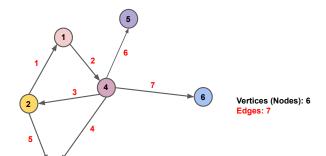


Introduction to Graph Neural Networks

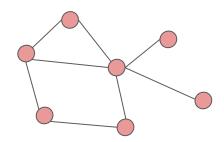
Applications in Bioinformatics



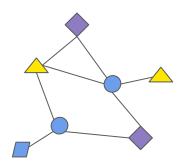
Sumit Kumar Senior Research Fellow Translational Bioinformatics Group ICGEB, New Delhi


Supervisor: Dr. Dinesh Gupta

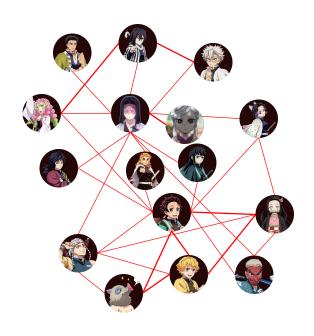
What are Graphs?


Undirected Graph

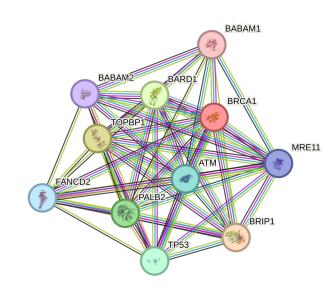
G = (V, E)



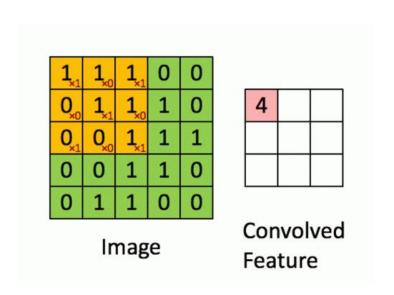
Homogenous Graph


Heterogenous Graph


Directed Graph



Graphs are all around us 🌍

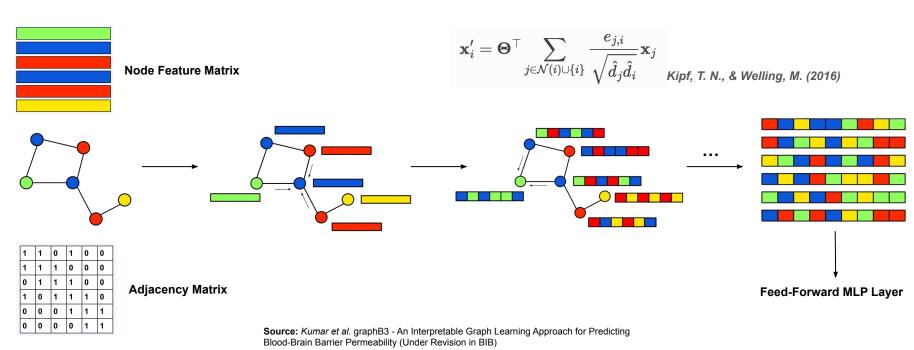


SOCIAL NETWORKS

MOLECULES

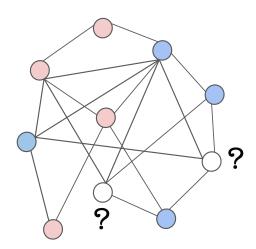
PROTEIN-PROTEIN **INTERACTION**

Motivation behind Graph Neural Networks

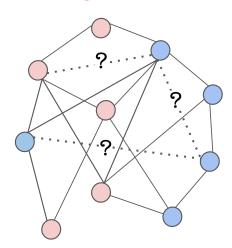

Images are euclidean as 2D/3D pixel grid

Graphs are non-euclidean (now how to operate convolutions?)

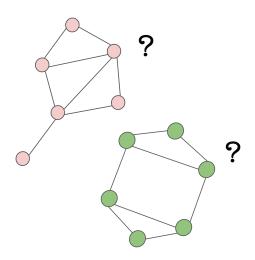
Message Passing (The Core Concept)



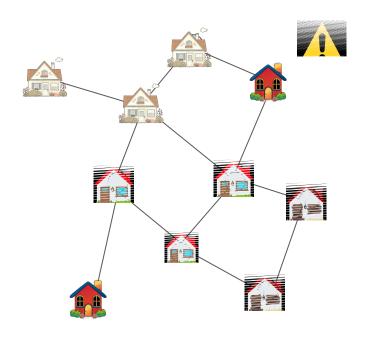
Updated Node A = Update(Node A, Aggregate(Neighbors of Node A)


Types of prediction tasks with GNNs

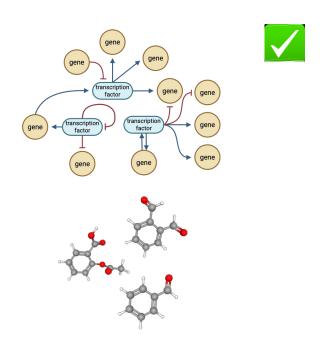
Node-Level


- Protein function in a PPI Network
- Gene expression state in a GRN
- Cell-cell interaction in multi omics data

Edge-Level


- Relation between a gene and a disease in a gene-disease network
- Whether two proteins are interacting in a PPI network
- Predict if two drugs work synergistically

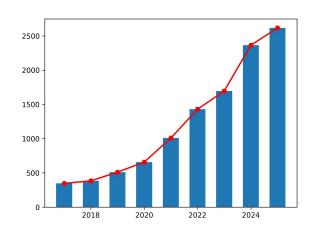
Graph-Level



- Drug Discovery
- Protein function prediction

When to use Graph Neural Networks?

Predicting housing prices using GNNs?

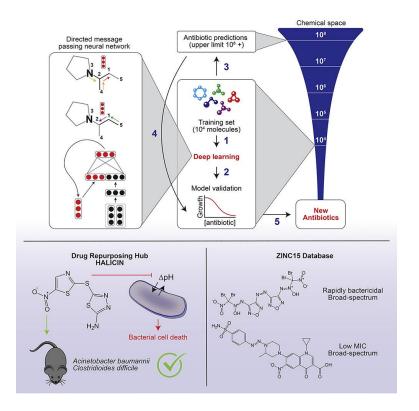


Predicting a gene activity in a Gene Regulatory Network or Predicting a molecules activity?


KEYWORDS: Dependency, diversity, size, etc.

7

Why Graph Neural Networks?



Number of publications in PubMed mentioning Graph Neural Networks/GNN

Examples

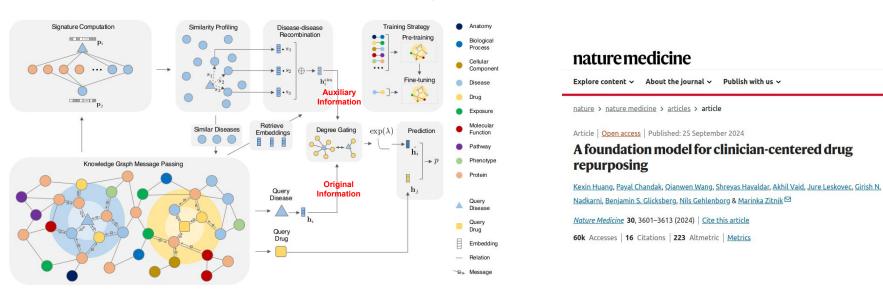
Stokes et al.

Volume 180, Issue 4, 20 February 2020, Pages 688-702.e13

Article

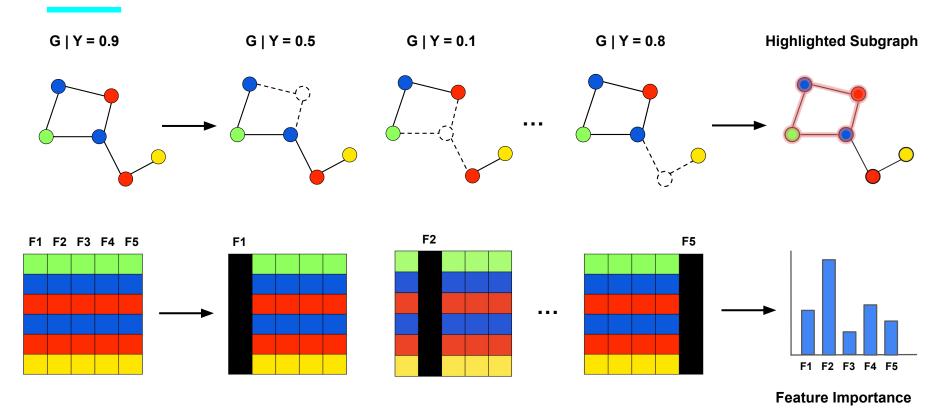
A Deep Learning Approach to Antibiotic Discovery

Jonathan M. Stokes ¹²³, Kevin Yang ^{34 10}, Kyle Swanson ^{34 10}, Wengong Jin ³⁴,
Andres Cubillos-Ruiz ¹²³, Nina M. Donghia ¹³, Craig R. MacNair ⁶, Shawn French ⁶,
Lindsey A. Carfrae ⁶, Zohar Bloom-Ackermann ²⁷, Victoria M. Tran ², Anush Chiappino-Pepe ⁵⁷,
Ahmed H. Badran ², Ian W. Andrews ¹²³, Emma J. Choryl ¹², George M. Church ⁵⁷⁸, Eric D. Brown ⁶, Tommi S. Jackkola ³⁴, Regina Barzilla ³⁴ ⁹, R. B., James J. Collins ^{125,89} ^{125,89} ¹³


Model	Feature	Rank of Halicin
Graph neural network	Learned	61
Feed-forward neural network	RDKit features (fixed)	273
Feed-forward neural network	Morgan fingerprint (fixed)	1217
Random forest	Morgan fingerprint (fixed)	2640
Support vector machine	Morgan fingerprint (fixed)	771

Top 99 compounds were experimentally validated out of which 51 were indeed antibiotics

Source: Wengong Jin, CSAIL, MIT


Examples

Huang et al.

TxGNN predicted 478 diseases and 1290 drugs found in electronic medical records.

Graph-Based Explainable AI (graphXAI)

Example: Perturbation-Based Method (GNNExplainer, PGExplainer, SubgraphX, etc.)

Limitations & Future Directions

- Over-Smoothing: Repeated aggregation can make node embeddings too similar.
- Scalability: GNNs struggle with large graphs, long-range connections are challenging to handle.
- Computation-Cost: Message passing can be memory-intensive and slow for deep architectures.
- Lack of standardized frameworks to build your own graphs.
- Graph Transformers is an active area of research that deals with a problem of over-smoothing and scalability; however it increases computational cost further.
- Graph coarsening or hierarchical pooling can alleviate scalability issues by reducing graph size while preserving key structural information.

Resources

References:

- Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. In arXiv [cs.LG]. http://arxiv.org/abs/1609.02907, ICLR 2017
- Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019). Weisfeiler and Leman go neural: Higher-order graph neural networks. Proceedings of the ... AAAI Conference on Artificial Intelligence, 33(01), 4602–4609. https://doi.org/10.1609/aaai.v33i01.33014602
- Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). GNNExplainer: Generating explanations for graph Neural Networks. Neural Information Processing Systems, 32, 9240–9251.

Get started with Pytorch basics: https://docs.pytorch.org/tutorials/index.html

Get started with Pytorch-Geometric: https://pytorch-geometric.readthedocs.io/en/2.6.1/get_started/colabs.html

Helpful video-series:

- https://youtube.com/playlist?list=PLV8yxwGOxvvoNkzPfCx2i8an--Tkt708Z&si=VTnpJtlq r4B3Gkj
- https://youtube.com/playlist?list=PLoROMvodv4rPLKxlpqhjhPgdQy7imNkDn&si=NYW9fLugoMyndkm1

GNN for Drug Discovery:

- https://deepchem.readthedocs.io/en/latest/api_reference/featurizers.html#graph-convolution-featurizers
- https://deepchem.io/tutorials/introduction-to-graph-convolutions/

